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1.0 INTRODUCTION 
1.1 Objective of this Handbook 
Risk assessment is defined in terms of the combination of the severity and likelihood of a 
mishap.  MIL-STD-882E, Standard Practice for System Safety [1], addresses the two 
components of risk by considering four categories of severity and five levels of probability of 
occurrence with a grouping of the combinations into risk categories.  Because MIL-STD-882E 
applies to all systems, the levels of mishap severity are defined in qualitative terms and the joint 
effects of likelihood and severity are accounted for by assigning to four Mishap Risk Categories.  
If the consequence of a failure is catastrophic, say loss of airplane and pilot, the risk is obviously 
in the most severe mishap risk category.  If the consequence of a failure can be expressed in 
dollars, the risk can be quantified in terms of the expected loss as calculated from the product of 
failure probability and loss value. 

USAF Airworthiness Bulletin (AWB)-013A, Risk Identification and Acceptance for 
Airworthiness Determination [2], defines airworthiness in terms of the probability of aircraft loss 
per flight hour.  This document is directed at aircraft failures from the combination of all causes 
but recognizes that an aircraft comprises distinct functions.  The aircraft structure is one of these 
ten functions.  Accordingly, the requirements of the MIL-STD-1530C Aircraft Structural 
Integrity Program (ASIP), [3], now reflect the need to perform structural risk and reliability 
analyses of safety critical airframe structure.  Reliability is the likelihood that a mishap will not 
occur, i.e., the complement of the likelihood of a mishap in MIL-STD-882E.   

The Aircraft Structural Reliability and Risk Handbook is intended to provide guidance on 
performing the analyses required to assess structural reliability of airframe structure to meet the 
requirements of MIL-STD-1530C.  Determination of risk requires that the consequences of a 
potential structural failure be considered along with the structural reliability.  Understanding the 
consequence of a structural failure is fundamental to all structural engineering.  And so guidance 
on determining the consequences of a structural failure is not addressed in this handbook. 

The specific goals of this handbook are: 

a) To provide a reference on basic statistics, probability, and reliability techniques 
required for conducting structural risk and reliability analyses, and 

b) To illustrate methods for characterizing data for structural risk and reliability analyses 
through worked examples. 

As a handbook, this document is not intended to be read from cover to cover.  It is intended that 
the user of this handbook will refer to specific sections and examples that are similar to the 
particular problem that they are trying to solve. 

1.2 Failure Modes Addressed 
This handbook focuses specifically on the analysis methods for estimating probabilities of 
structural failure due to the initiation and growth of fatigue cracks in metallic structure.  As an 
airframe ages, there are many other potential sources of damage that can lead to structural 
failure.  These include: 

a) Delamination, 
b) Corrosion/material thinning, 
c) Material property degradation,  
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d) Handling during inspections and maintenance, 
e) Disbond, 
f) Impact damage, and 
g) Stress corrosion cracking. 

At present, well-established and widely-accepted models exist only for the degradation of 
structural integrity due to fatigue cracking in metallic structure.  Because widely acceptable 
models for the degradation of structural integrity via other mechanisms are not available, these 
mechanisms are not considered in the reliability analyses of this handbook.  In the future as 
models for other progressive damage phenomena become available, other types of damage and 
failure can be added to the handbook. 

1.3 Organization of this Handbook 
The Aircraft Structural Reliability and Risk Handbook will consist of multiple volumes. This 
volume which is the first describes the fundamentals of probabilistic analysis and structural 
reliability analysis for the next event, i.e., the next flight.  Subsequent volumes will address 
structural reliability analysis over a long series of events, i.e., thousands of flights, and how to 
use the results of structural reliability analyses to guide decisions on when to repair, replace, and 
retire aircraft.   

This volume of the Aircraft Structural Reliability and Risk Handbook is organized as follows.  
Section 2.0 provides some background on structural reliability analysis.  In Section 3.0, 
important terms are defined and common probability distributions used in structural reliability 
analyses are presented.  Techniques for finding the best probability distribution models for a set 
of data are discussed in Section 4.0.  Creating a model of the cumulative probability of failure 
over the lifetime of a part from observed failure times is described in Section 5.0.  Finally, in 
Section 6.0, the prediction of the probability of failure for a part during the next flight from the 
physics of the failure mechanism is illustrated. 
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2.0 BACKGROUND 
Since 1975, the USAF has used the damage tolerance philosophy to ensure the structural 
integrity of its aircraft.  Damage tolerance considers the ability of structure to sustain anticipated 
loads in the presence of damage (fatigue, corrosion, or accidental damage) until such damage is 
detected (through inspections or malfunctions) and repaired.  Two approaches are used to 
establish the damage tolerance of a structure:  slow crack growth and fail safety. 

Damage tolerance analyses (DTA) are deterministic.  Crack sizes are determined from estimates 
of the largest amount of undetected damage that could be in a structure.  Analyses determine 
how rapidly a crack of this size would grow to failure under an anticipated loading.  Inspection 
intervals are then established so that the structure will be inspected twice before a crack of this 
size would grow to failure. 

While this approach is judged to be conservative, there is still a small chance of a failure.  The 
actual damage in the structure could be greater than that assumed.  The loading may be more 
severe than was anticipated.  And, individual details may have fracture toughness less than the 
design value.  There is significant uncertainty about the future performance of the structure in 
this situation.  A safety factor of 2 is applied to the predicted crack growth life to accommodate 
this uncertainty. 

2.1 Probability of Failure 
In 1955, Lundberg [4] recommended tackling aeronautical fatigue with statistical methods.  
Lundberg proposed a definition of safety in terms of the failure rate, which he defined as the 
cumulative probability of a catastrophic failure divided by the operational time.  The cumulative 
probability of a catastrophic failure is a function of the operational time, i.e., flight hours.  
Lundberg suggested a permitted, or critical, failure rate of 10-9 per flight hour for civilian 
transport aircraft.  This suggestion came from Lundberg’s belief that there should not be more 
than one catastrophic failure during one or two generations, i.e., 30 to 60 years.  He estimated 
that in a period of about 40 years (from 1953) a total of 109 flight hours will be completed by 
commercial aviation.  Thus, the critical failure rate is derived to give an expectation of 1 failure 
during that time.  Note that physics-based models for fatigue and fatigue crack growth were in 
their infancy when Lundberg made this proposal.  His probability of catastrophic failure was 
based upon test results and operational experience. 

Lincoln adapted Lundgren’s recommendation for military aircraft in the 1980.  Since military 
aircraft have significantly different flight durations, but desiring to have a single metric that 
applies to all aircraft in the inventory, Lincoln went to a flight, rather than a flight hour, as the 
basic time unit for the failure rate.  Lincoln called this rescaled measure the Single Flight 
Probability of Failure (SFPOF) [5].  Lincoln also proposed the permissible value for SFPOF as 
10-7 failures per flight.  For SFPOF greater than 10-7, structural modifications or replacements 
should be considered to ensure continued safe operation.  If the SFPOF is greater than 10-5 for an 
extended period, the failure rate is considered unacceptable.  These SFPOF values are the current 
standard in MIL-STD-1530C.  In addition, Lincoln stated that there should not be more than 1 
failure expected in an aircraft fleet during the lifetime. 

In addition, since more was known about the mechanics of fatigue in 1980 than in 1955, Lincoln 
proposed a method for calculating the SFPOF over the service life of an aircraft as a result of 
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fatigue crack growth and subsequent fracture [5], [6].  This method was implemented in a 
computer program called RISKY.  RISKY was the basis for the subsequent PROF program [7] 
constructed by the University of Dayton Research Institute under an Air Force Research 
Laboratory contract.  The intent of this method was to provide managers with an instantaneous 
assessment of the probability of a failure at a point in an aircraft’s service life.  Those structural 
elements that most affect structural integrity and drive maintenance will typically have a larger 
SFPOF. 

2.2 Factor of Safety and Probability of Failure 
In the mid-1950’s, the American Society of Civil Engineers (ASCE) appointed a committee to 
formulate a clear definition of the factor of safety.  The committee voiced a basic principle that 
the term “factor of safety” acquires a rational meaning possibly by its correlation with a 
probability of failure or survival (i.e., reliability).  This principle attempts to place the concept of 
structural safety in the realm of physical reality where knowledge is imperfect and absolutes, 
such as minimum strength, do not exist.  In their final report in 1966 [8], the committee 
concluded that it is now possible to give consideration of to all aspects of structural safety by the 
probabilistic approach.  The report went on to develop and explain techniques for calculating 
structural reliability for various types of structural problems where the load carrying capacity of 
the structure, or strength, and the loads applied to the structure are described by probability 
distributions.  Of particular interest to our application is the formulation and solution for 
problems where the load carrying capacity degrades with time in service. 

2.3 Structural Reliability 
The reliability of structural components and systems is different than that of technical 
components such as valves, pumps, generators, transistors, etc.  Failures occur more rarely and 
the mechanisms behind the failures are different.  Structural failures do not occur solely because 
of an aging process, but as a result of interactions between aging processes and extreme events.  
Thus, it is necessary to consider the influences acting from the outside (the loads) and influences 
acting from inside (the strength) when performing a structural reliability analysis. 

Significant uncertainties exist in the probabilistic models of the loads and the strengths as a result 
of limited information.  Estimates of failure probabilities depend on assumptions concerning the 
probability distributions of either time to failure or the strength and stress properties of the 
factors that determine failure.  That is, models (functions) must be assumed for the distributions 
and the parameters of the models must be estimated from samples of data.  Any estimate of 
extremely small probabilities must come from the extreme tails of the distributions.  Historical 
records indicate that the chance of a structural fatigue failure in an airframe resulting in 
catastrophic consequences is very small, about 1.5 per 107 flight hours, as shown in Figure 1.  
Catastrophic consequences are considered to be loss of life, permanent total disability, 
irreversible significant environment impact, or monetary loss greater than or equal to $10M.  
Because there is never enough data to directly assess the probabilities in the tails of the 
distribution, the failure probabilities are obtained by extrapolating from data near the mean of the 
distribution.  Thus, the failure probabilities must be understood as nominal probabilities, i.e., not 
reflecting the true, precise probability of structural failure but rather reflecting the current 
information about the performance of the structure.  Every effort should be made to use 
probability distribution functions and parameter estimates that fit all available data and lead to 
conservative estimates of failure probability from the relevant distribution tail. 
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Figure 1.  USAF Aircraft Loss Rate  

Comparing all causes to those from structural failures and from structural fatigue failures [9] 
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3.0 STRUCTURAL RELIABILITY FUNDAMENTALS 
This section presents a brief description of the fundamental concepts of structural reliability 
analysis. The reader in need of refresher on the basics of statistics and probability should consult 
the NIST/SEMATECH e-Handbook of Statistical Methods, [10] online 
at http://www.itl.nist.gov/div898/handbook/. 

This section begins by defining important terms and concepts used in structural reliability 
analysis.  Then, probability distributions that are commonly used in structural reliability analysis 
are reviewed. 

3.1 Definitions 
The following terms are important for structural reliability analysis. 

3.1.1 Risk 
Risk is the potential for losses and rewards as a result of a failure event.  Risk is a characteristic 
of an uncertain future, and not of either the present or past.  When uncertainties are resolved, or 
the future becomes the present, risk becomes nonexistent.  Risk does not exist for historical 
events or events that are currently happening.  Risk is evaluated in terms of both the probability 
of occurrence and the impact of the occurrence.  The USAF uses a matrix to determine the risk in 
terms of a Hazard Risk Index (HRI) as shown in Figure 2. 

 
Figure 2.  USAF Airworthiness Risk Acceptance Matrix [2] 
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3.1.2 Reliability 
Reliability is the probability that a system or component will survive, i.e., function as intended, 
under designated operating or environmental conditions for a specified time period.  Reliability 
is the complement to the probability of failure, 

 Reliability = 1 – Failure Probability. 

 

3.1.3 Lifetime Distribution 
A lifetime distribution describes how a nonrepairable population fails over time.  The lifetime 
distribution can be any probability density function (PDF), f(t), defined over the range of time 
from t = 0 to t = infinity. The corresponding cumulative distribution function (CDF), F(t), gives 
the probability that a randomly selected unit will fail before time t. 
 
3.1.4 Probability Density Function (PDF) 
A PDF, fX(y), defines the probability that a continuous random variable will take a particular 
value.  The probability that the random variable X will have a value within the interval from x1 to 
x2 is: 

𝑃𝑟(𝑥1 ≤ 𝑋 ≤ 𝑥2) = � 𝑓𝑋(𝑦)𝑑𝑦

𝑥2

𝑥1

.                                             (1) 

A PDF must be nonnegative and the total area under the PDF curve must be equal to one. 

3.1.5 Cumulative Distribution Function (CDF) 
A CDF, FX(y), gives the probability that a continuous random variable, X, will take a value less 
than or equal to a specified value, x1, 

𝐹𝑋(𝑥1) = 𝑃𝑟(𝑋 ≤ 𝑥1) = � 𝑓𝑋(𝑦)

𝑥1

−∞

𝑑𝑦.                                         (2) 

The value of the CDF must be greater than or equal to 0, and less than or equal to 1.  The CDF is 
also a non-decreasing function. 

3.1.6 Exceedance Distribution Function (EDF) 
An EDF, DX(y), gives the probability that a continuous random variable, X, will take a value 
greater than a specified value, x1.  The sum of the CDF, FX(y), and the EDF is equal to one since 
the total probability is equal to one, and the CDF and EDF cover all the possibilities for the 
random variable X.  Hence, 
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𝐷𝑋(𝑥1) = 𝑃𝑟(𝑋 > 𝑥1) = 1 − 𝐹𝑋(𝑥1)                                           

= 1 − � 𝑓𝑋(𝑦)

𝑥1

−∞

𝑑𝑦 = � 𝑓𝑋(𝑦)
∞

𝑥1

𝑑𝑦.                                (3) 

The value of the EDF must be greater than or equal to 0, and less than or equal to 1.  The EDF is 
also a non-increasing function. 

3.1.7 Hazard Rate Function (HRF) 
The HRF is defined from the probability of failure of an item in the time interval t to t+Δt with 
the condition that the item is functioning at time t, for small Δt.  The probability that the failure 
time T is between t and t+Δt with the condition that T is greater than t is given by 

 𝑃𝑟(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 > 𝑡) = 𝑓𝑇(𝑡)
1−𝐹𝑇(𝑡) ∆𝑡                                       (4) 

where fT(t) is the PDF and FT(t) is the CDF of the lifetime distribution for the item, respectively.  
The HRF, hT(t), is defined as 

 ℎ𝑇(𝑡) = 𝑓𝑇(𝑡)
1−𝐹𝑇(𝑡) .                                                             (5) 

The HRF is also known as the failure rate function, the instantaneous failure rate, or force of 
mortality.  The HRF is a measure of the proneness to failure as a function of age.  The expected 
proportion of items of age t that fail in a short time ∆t is equal to ∆t⋅hT(t). 
The HRF is strictly not a probability.  A cumulative hazard rate function, HT(t), can be defined 
as 

𝐻𝑇(𝑡) = � ℎ𝑇(𝑥)𝑑𝑥.
𝑡

0

                                                       (6) 

The relationship between HT(t) and the CDF of the lifetime distribution,  FT(t), is 

 𝐹𝑇(𝑡) = 1 − 𝑒−𝐻𝑇(𝑡).                                                         (7) 
When t equals ∞, FT(∞) equals 1 and HT(∞) equals ∞.  Therefore, the cumulative hazard rate 
function cannot be a CDF since it has values greater than 1, and hT(t) cannot be a PDF. 

3.1.8 Single Flight Probability of Failure (SFPOF) 
SFPOF is the probability of a failure during one flight with the condition that there has not been 
a failure in any of the previous flights.  The SFPOF can be calculated as the product of the HRF 
at a specified flight, hT(t), and a time increment ∆t of one flight. 

3.2 Common Probability Distributions 
This section introduces four of the probability distributions that are commonly used in structural 
reliability analysis.  These include the normal, lognormal, exponential, and Weibull distributions.  
(The NIST/SEMATECH e-Handbook of Statistical Methods [10] has additional details on these 
and other distributions.) 
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Like many of the widely used statistical distributions, these are location-scale distributions.  The 
scale parameter prescribes the spread of the distribution (wide, skewed).  Examples of scale 
parameters are the standard deviation (σ) for normal and lognormal distributions and shape 
parameter (β) for Weibull.  The location parameter specifies the location of a central point of the 
distribution.  Examples of location parameters are the mean (µ) for the normal, the median (eµ) 
for the lognormal, and the scale parameter (α) for Weibull.  (Note the paradox: the Weibull scale 
parameter is a location parameter because about 63 percent of a population is always less than 
the scale parameter.) 

3.2.1 Normal Distribution 

The normal distribution is perhaps the best-known distribution.  For a mean µ and standard 
deviation σ, the PDF of the normal distribution is given by 

 𝑓(𝑡) = 1
𝜎√2𝜋

𝑒𝑥𝑝 �−0.5 �𝑡−𝜇
𝜎

�
2

� .                                             (8) 

Figure 3 shows plots of the PDF and CDF of the normal distribution for a mean of 5 and three 
different values of standard deviation.  A normal distribution with a mean of 0 and a standard 
deviation of 1 is known as the standard normal distribution.  The CDF for the standard normal, 
usually represented by Φ(t), is tabulated in the back of most probability textbooks.  Any normal 
distribution can be mapped into the standard normal distribution through the standard normal 
random variable, 

𝑧 =
𝑡 − 𝜇

𝜎
.                                                                 (9) 

The normal distribution has several convenient properties, including: 

• Central limit theorem:  The distribution of the sum of independent random variables 
usually tends to a normal distribution as the number of elements in the sum increases.  
Since scatter in real world observations can often be thought of as the sum of many 
random effects, the normal distribution has been found to fit many data sets over a 
wide range of disciplines. 

• Additive property:  A random variable is normally distributed if it is the sum of 2 or 
more independent random variables, each of which is normally distributed.  Its mean 
is the sum of the means, and its variance (the square of standard deviation) is the sum 
of the variances. 

Since the normal distribution extends over negative values, it is sometimes inappropriate for 
representing data that can only be positive.  Such would be the case when the standard deviation 
is relatively large compared to the mean so that the normal distribution would predict a 
reasonably large chance of an impossible negative observation.  For example, distributions of 
structural crack sizes typically have standard deviations that are greater than the mean, so that a 
normal distribution would indicate a large percentage of negative crack sizes.  On the other hand, 
when observations that can only be positive are all far separated from zero relative to their 
scatter, the normal distribution can still provide a useful model.  For example, a normal 
distribution is often fit to observations of tensile strength and fracture toughness. 
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Figure 3.  Normal Probability Density and Cumulative Distribution Functions 
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3.2.2 Lognormal Distribution 
The lognormal distribution for t is simply a normal distribution of the natural log, ln(t).  The PDF 
of the lognormal distribution is given by 

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 �−0.5 �

𝑙𝑛(𝑡) − 𝜇
𝜎

�
2

� .                                  (10) 

In Equation (10), µ and σ are the mean and standard deviations of ln(t).  The median (CDF = 
0.5) of the distribution of t is given by eµ.  Figure 4 shows graphs of the PDF and CDF for the 
Lognormal distribution for a log mean of 0 (i.e., ln(1.0)) and three different values of standard 
deviation. 

The lognormal distribution has been commonly used for decades to represent the distribution of 
structural integrity variables such as fatigue life, strength, fracture toughness, crack growth rate, 
and crack sizes.  It shares convenient features of the normal distribution.  For example, consider 
this corollary to the additive property of the normal distribution:  A random variable is 
lognormally distributed if it is the product of 2 or more independent random variables, each of 
which is lognormally distributed. 
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Figure 4.  Lognormal Probability Functions 
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3.2.3 Weibull Distribution 
Waloddi Weibull is credited with the introduction of the Weibull probability distribution in 1937.  
It was found to work well with extremely few data samples (even as few as 2 or 3).  The Weibull 
distribution is now routinely used in reliability applications involving aircraft and propulsion 
system service life.  Examples include: 

• Fatigue life scatter in metallic alloys, 

• Equivalent initial flaw size distributions, 

• Crack growth rate scatter in metallic alloys. 

The Weibull distribution can be a three-parameter or two-parameter distribution.  The three-
parameter Weibull distribution has a shape parameter α, scale parameter β, and a location 
parameter t0.  The Weibull distribution starts at the value of the location parameter.  Thus, t0 
provides an estimate of the smallest value in the domain of the distribution.  The location 
parameter is frequently set equal to zero for structural reliability applications; reducing to the 
two-parameter Weibull distribution.  The PDF and CDF for the Weibull distribution are, 
respectively: 

𝑓(𝑡) = 𝛼
𝛽

�𝑡−𝑡0
𝛽

�
𝛼−1

𝑒𝑥𝑝 �− �𝑡−𝑡0
𝛽

�
𝛼

� ,                                       (11)  

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 �− �𝑡−𝑡0
𝛽

�
𝛼

� .                                             (12)  

The mean and standard deviation of the Weibull distribution are, respectively 

 µ = β Γ(1+1/α) + t0,  (13)  

𝜎 = 𝛽�𝛤 �1 + 2
𝛼

� − �𝛤 �1 + 1
𝛼

��
2

,                                    (14)  

where Γ(x) is the gamma function, 

𝛤(𝑥) = � 𝑒−𝑦𝑦𝑥−1

∞

0

𝑑𝑦.                                         (15) 

Figure 5 shows graphs of the PDF and CDF for the Weibull distribution for scale parameter (β) 
of 1 and three different values of shape parameter (α).  (When using any program, make sure 
which variable is the scale parameter and which is the shape parameter.) 

The two-parameter Weibull distribution is simply the case where t0 = 0.  When t – t0 equals β, 
the value of the Weibull CDF is 

𝐹(𝛽 + 𝑡0) = 1 − 𝑒𝑥𝑝 �− �
β
β

�
α

� = 1 − 𝑒−1 = 0.632.                        (16) 

Thus, the 2-parameter Weibull CDF at t equal to β is 0.632 regardless of the value of shape 
parameter α.  Therefore in life calculations involving the Weibull distribution, the scale 
parameter β is sometimes called the characteristic life. 
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When the shape parameter is equal to 1, the Weibull distribution becomes equal to the 
exponential distribution.  For a shape parameter of 2, the Weibull distribution is the Rayleigh 
distribution which is commonly used in dynamics.  For shape parameter values between 3 and 4, 
the shape of the Weibull distribution is close to that of the normal distribution. 
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Figure 5.  Weibull Probability Functions 
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3.2.4 Exponential Distribution 
As mentioned above, the exponential distribution is the limiting case of the two- parameter 
Weibull Distribution with Weibull shape parameter equal to one.  As a result, the exponential 
distribution has a single parameter, λ, sometimes called the rate parameter.  The PDF and CDF of 
the exponential distribution are given by 

 f(t) = (1/λ) exp(-t/λ) (17) 
 F(t) = 1 - exp(-t/λ) (18) 
Figure 6 shows graphs of the PDF and CDF for the exponential distribution for three different 
values of the rate parameter λ. 
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Figure 6.  Exponential Probability Functions 
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4.0 MODELING VARIATIONS IN DATA WITH PROBABILITY DISTRIBUTIONS 
An important aspect of structural reliability analysis is describing variations in observed data 
with a probability distribution.  The focus of this section is determining the best distribution to 
model variability in a set of observations (test data).  Sometimes, physics may guide the selection 
of a probability distribution.  Other times, different distributions will have to be tried to see 
which fits the data best.  Once a model probability distribution function has been selected for 
trial, the parameters for that distribution must be estimated.  There are two approaches to 
accomplishing this:  plotting the data on a probability graph, and analysis based on statistical 
theory.  These approaches will be discussed in the next two sections. 

4.1 Probability Plotting 
Probability plotting enables the analyst to 

• Visually assess the adequacy of the distribution model, 

• Obtain estimates of the distribution parameters, 

• Provide nonparametric estimates of the probabilities. 

Data is plotted on probability graphs to estimate the distribution parameters and assess the 
goodness-of-fit of the distribution.  Probability graphs are specifically constructed for different 
distribution functions, e.g., normal, lognormal, Weibull, Gumbel, etc., to produce a straight line 
if the data is appropriately described by that distribution. 

One axis of the probability graph is either a linear or logarithmic scale corresponding to the 
values of the data.  The other axis of the probability graph is scaled in terms of cumulative 
probability of the distribution for which the graph is formulated.  The data are rank ordered from 
smallest to largest.  A cumulative probability is assigned to each data point based upon its rank.  
The ordered pairs of data value and cumulative probability are plotted on the graph.  If the 
plotted points lie on a straight line, or very nearly a straight line, then the slope and a point on the 
line can be used to find the scale and shape parameters for the distribution.  Examples of 
probability graph formats for normal and Weibull distributions are shown in Figure 7 and Figure 
8. 

The probability scale in the Normal probability plot in Figure 7 is created by mapping the 
probability P onto the x-axis using the equation 

𝑥 = 𝛷−1(𝑃),                                                          (19) 

where Φ -1(..) is the inverse of the standard normal cumulative probability function. In terms of 
the random variable t, the inverse probability function is 

𝛷−1(𝑃) =
𝑡 − 𝜇

𝜎
 ,                                                        (20) 

which results in the equation 

𝜎 ∙ 𝛷−1(𝑃) + 𝜇 = 𝑡.                                                     (21) 

Thus, plotting Φ -1(P) on the x-axis and the random variable t on the y-axis produces a line with 
slope equal to the standard deviation σ of the distribution.  The value of the random variable at 



19 
Approved for public release; distribution unlimited. 

which the line crosses 50 percent probability is the mean µ of the distribution.  A lognormal 
probability graph would just change the random variable axis of the normal probability graph to 
a logarithmic scale.  Usually the common logarithmic scale (base 10) is used since it is easier to 
visualize. 

 
Figure 7.  Normal Probability Graph Format 

The probability scale for the Weibull probability graph in Figure 8 is created by mapping the 
probability P onto the y-axis using the function 

𝑦 = 𝑙𝑛 �𝑙𝑛 �
1

1 − 𝑃
�� ,                                                    (22) 

which linearizes the Weibull distribution function as 

𝑙𝑛 �𝑙𝑛 �
1

1 − 𝑃
�� = α 𝑙𝑛(𝑡) − α 𝑙𝑛(β),                                       (23) 

or y = αx + b. (24) 

Thus, the logarithm of t is plotted on the horizontal axis in Figure 8.  The common logarithm is 
used since it only differs from the natural logarithm by a constant factor. 

The following example will now demonstrate how to use probability plotting to find a 
probability distribution for a data sample. 



20 
Approved for public release; distribution unlimited. 

 
Figure 8.  Weibull Probability Graph Format 

4.1.1 Creating Lognormal and Weibull Probability Plots 
Consider the failure times from 10 tests listed in Table 1.  A lifetime distribution needs to be 
determined from the data.  The candidate distributions are the lognormal and Weibull 
distributions.  This will be done by plotting the data on probability plots and fitting a line to the 
data using a least squares estimate (LSE).  The correlation coefficient will be used to determine 
which distribution is better at describing the variation in the failure data. 

Step 1. The failure times must be ordered from smallest to largest as in Table 2.  Assign an 
order number i to each failure time.  The smallest failure time is 1; the largest is 10.  
The total number of data points is N. 

Step 2. Estimate the cumulative probability corresponding to each failure time.  There are two 
common ways of doing this.  One is mean rank which is shown in the third column of 
Table 2 and calculated as 

  𝑃 = 𝑖
𝑁+1

.                                                              (25) 

The other method is median rank, also known as Bernard rank, which is shown in the 
fourth column of Table 2 and calculated as 

 𝑃 = 𝑖−0.3
𝑁+0.4

.                                                           (26) 
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Table 1.  Failure Time Results from 10 Tests 

 

 
Table 2.  Mean and Median Rank of Failure Times 

Failure 
Time (hrs) 

Order 
Number Mean Rank 

Median 
Rank 

50 1 0.0909 0.0673 

62 2 0.1818 0.1635 

73 3 0.2727 0.2596 

81 4 0.3636 0.3558 

89 5 0.4545 0.4519 

95 6 0.5455 0.5481 

97 7 0.6364 0.6442 

100 8 0.7273 0.7404 

110 9 0.8182 0.8365 

120 10 0.9091 0.9327 

Typically, the plotting position difference between these two methods of computing rank is less 
than the randomness in the data [11].  Either method can be used just so that one method is 
consistently used when comparing data or the fit of different distributions.  Median rank is 
preferred for the Weibull distribution, so it will be used for plotting both distributions. 

Specimen 
No. 

Failure 
Time (hrs) 

1 100 

2 81 

3 95 

4 120 

5 62 

6 73 

7 97 

8 89 

9 110 

10 50 
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4.1.1.1 Lognormal Probability Plot 
The steps specific to constructing and analyzing a lognormal probability plot are presented in this 
section. 

Step 3a. Plot the ordered pairs of median rank, Pi, and failure time, ti, from Table 2 on a 
lognormal probability plot as in Figure 9. 

Step 4a. Perform a least squares linear fit to the values Φ -1(Pi) and ln(ti).  The slope of the line 
(the standard deviation) is 0.285.  The mean of the ln(t) is 4.44, equivalent to a time to 
failure of 85.07 hours.  The correlation coefficient R2 is equal to 0.943. 

 
Figure 9.  Lognormal Probability Plot of Failure Data  

4.1.1.2 Weibull Probability Plot 
The steps specific to constructing and analyzing a Weibull probability plot are presented in this 
section. 

Step 3b. Plot the ordered pairs of median rank, Pi, and failure time, ti, from Table 2 on a 
Weibull probability plot as in Figure 10. 

Step 4b. Perform a least squares linear fit to the values ln(ti) and ln(ln(1/(1-Pi))).  The slope of 
the line (the shape parameter) is equal to 4.126.  The failure time at a probability of 63 
percent is equal to the scale parameter.  For these data, the scale parameter is equal to 
96.57 hours.  The correlation coefficient R2 for the fit is 0.989. 
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Figure 10.  Weibull Probability Plot of Failure Data 

4.1.2 Selecting the Best Probability Distribution Model 
The probability distribution that best fits the data can be determined from the correlation 
coefficients R2 for the data.  Comparison of R2 for the lognormal and Weibull probability plots 
shows that the failure data plots more nearly as a line on the Weibull probability plot, 0.989 
versus 0.943. 

4.1.3 Software-Generated Probability Plots 
Probability plots can be generated in statistical software packages such as Minitab®, 
SuperSMITH®, etc.  The plots in Figure 9 and Figure 10 were produced in Excel.  Even when a 
probability plot is not used to fit a model distribution to a set of data, the resulting distribution 
should be graphed on a probability plot with the data to allow a visual assessment of how well 
the distribution describes the random data. 

Other options exist for estimating the parameters of the distributions beside the LSE method.  
Maximum likelihood estimation (MLE) is the preferred option over LSE for deriving the 
parameters of a distribution, especially when there more than 10 data points.  However, when 
there are fewer than 5 data points, MLE can give a biased estimate and probably should not be 
used [10].  When there are between 5 and 10 data points, the results of MLE should be carefully 
reviewed.  MLE will be demonstrated in the following section. 
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4.2 Statistical Analysis of Data 
The statistical analysis approach to determining a distribution for a data set involves four basic 
steps: 

Step 1. Select a trial model (equation) for the distribution function.  As noted, for structural 
reliability data, the model would likely be either a Weibull, lognormal, or normal 
distribution. 

Step 2. Estimate the parameters of the model using standard statistical procedures – usually 
MLE.  MLE calculates values for the parameters that are most likely to produce the 
observations of the data set.  MLE is good for one- and two-parameter distributions.  It 
should be used with caution for distributions with three or more parameters.  MLE can 
be performed in Excel using the Solver utility, but statistical analysis programs, such as 
Minitab®, are recommended.  (There are many readily available statistical analysis 
programs.) 

Step 3. Assess the quality of the fit by calculating confidence limits and doing a statistical test 
for the goodness of fit. 

• Confidence limits for the fit consist of an upper bound and lower bound curve.  If 
these limits have, say, a 95 percent confidence level, then there is 95 percent 
confidence that any new random data point from the population would fall between 
the two curves.  A tight confidence band is best. 

• An example of a statistical goodness-of-fit test is the adjusted Anderson-Darling 
test, which calculates a parameter 𝐴𝑁

2  for comparing the fit of two or more 
distributions.  The best fit is the one with the lowest value of 𝐴𝑁

2 . 

Step 4. Compare other models by repeating the above parameter estimation and fit tests.  If the 
goodness-of-fit parameters differ significantly, the distribution with the better fit is 
generally selected.  If the goodness of fit of two distributions is comparable, the 
distribution that gives higher probabilities in the domain of interest should be selected, 
or there may be physics-related reasons for selecting one over the other. 

These steps will be demonstrated for a normal distribution in the following sections.  The 
procedure for a lognormal distribution would be exactly the same, but using the logarithm of the 
data instead of the raw number.  An example using the Weibull probability distribution is in 
Section 4.2.2.  
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4.2.1 Maximum Likelihood Estimation of Distribution Parameters 
Consider the set of 34 ultimate tensile strength (UTS) results shown in Table 3.  The results have 
been rounded to the nearest integer value of kilopounds per square inch (ksi) and ordered from 
smallest to largest. 

Table 3.  Ultimate Tensile Strength Results for 34 Tensile Specimens 

   

These test results can be regarded as random UTS samples from a population of all material 
made to a particular material specification (say, 7075-T7351 Aluminum plate in a particular 
thickness range).  This sample should include material from a variety of approved material 
suppliers, lots, and plates to be representative of the entire population.  Assume this is the case, 
so that these data can be used to make statistical inferences about the UTS of this material.  
These values are plotted as a bar chart in Figure 11, displaying the frequency of each UTS value.  
The UTS values are symmetrically distributed about 71 ksi in what looks much like a normal 
distribution. 

So, select the normal distribution as the first probability model to test against the data.  Then 
perform a MLE of values for the mean and standard deviation of a normal distribution.  This will 
be done using an Excel spreadsheet to illustrate the method.  The spreadsheet is shown in Figure 
12 and the steps are explained below. 

Failure 
Stress 
(ksi)

Failure 
Stress 
(ksi)

67 71
68 71
68 71
69 71
69 72
69 72
69 72
70 72
70 72
70 72
70 73
70 73
70 73
71 73
71 74
71 74
71 75
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Figure 11.  Frequency Plot for Tensile Strength Data  

Step 1. List all of the UTS values in Col A.  Although they are listed in increasing value here, it 
is not necessary for the MLE. 

Step 2. Place initial values for the distribution mean and standard deviation in Cells B1 and B2, 
respectively. 

Step 3. Calculate the probability of each UTS value in Cells A6 to A39 using the probability 
distribution chosen to model the data.  In this case, the normal distribution was chosen.  
Cells B6 to B39 contain the normal distribution function in Excel:  
NORM.DIST(A6,$B$1,$B$2,FALSE) in Office 2010.  Cell A6 is a specific UTS value.  
$B$1 is the mean and $B$2 is the standard deviation.  FALSE indicates that the PDF of 
the Normal Distribution is to be calculated.  These probability values go in the 
appropriate cells of Col B. 

Step 4. In Col C, calculate the logarithm of the probability value in Col B.  This provides 
numbers with magnitude greater than 1 which increases the sensitivity of the 
maximization algorithm that is used to find the best values for the parameters of the 
model distribution.  In Excel, the Solver routine will be used. 

Step 5. Sum all the values in cells C6 to C39 and place the value in cell C4.  Maximizing this 
sum will also maximize the sum of all the probabilities in Col B. 

Step 6. Call the Solver from the Data Tab.  (The Solver is an Add-in that must be turned on by 
the user.)  Set up the Solver to maximize Cell C4 by adjusting the values in Cells B1 
and B2.  Run the Solver.  When the Solver has found a solution to maximize Cell C4, 
the values in Cells B1 and B2 are the MLE for the mean and standard deviation for a 
normal distribution describing this data sample. 

The resulting distribution, Normal with a mean of 71.0 and standard deviation of 1.815, is 
compared to the data in Figure 13.  The line for the distribution passes through or close to all the 
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data.  The sample average and standard deviation can also be compared to the MLE values.  The 
sample average is 71.0; the sample standard deviation is 1.842.  The difference between the MLE 
and the sample standard deviations is about 2 percent and tightening the convergence criteria in 
the Solver for the MLE does not change its estimate of the standard deviation. 

 
Figure 12.  MLE of Normal Distribution Parameters for UTS Data 

A B c I 
1 Mean = 70.99999617 

I 2 Std. Dev. = 1.8 14957311 

I 

3 

4 Sum (log(P(x))) = ·29.75362875 

5 UTS P(x) log(P(x)) 

6 67 0.0 1937828 1 · 1.7 1268474 

I 7 68 0.056073712 · 1.25 124069 

8 68 0.056073712 · 1.25 124069 

9 69 0.119773863 .0.92 1637942 

I 10 69 0.119773863 .0.92 1637942 

I 
11 69 0.119773863 .0.92 1637942 

12 69 0.119773863 .0.92 1637942 

13 70 0.188852834 .0. 723876494 

I 14 70 0.188852834 .0. 723876494 

I 15 70 0.188852834 .0. 723876494 

I 16 70 0.188852834 .0. 723876494 

I 17 70 0.188852834 .0. 723876494 

I 18 70 0.188852834 .0. 723876494 

19 7 1 0.2 1980 8079 .0.657956349 
I 

20 7 1 0.2 1980 8079 .0.657956349 
I 21 7 1 0.2 1980 8079 .0.657956349 

I 22 7 1 0.2 1980 8079 .0.657956349 

I 23 7 1 0.2 1980 8079 .0.657956349 

I 24 7 1 0.2 1980 8079 .0.657956349 

I 25 7 1 0.2 1980 8079 .0.657956349 

26 7 1 0.2 1980 8079 .0.657956349 

I 
27 72 0.188852394 .0. 723877505 

28 72 0.188852394 .0. 723877505 

I 29 72 0.188852394 .0. 723877505 

I 30 72 0.188852394 .0. 723877505 

31 72 0.188852394 .0. 723877505 

I 32 72 0.188852394 .0. 723877505 

33 73 0.119773306 .0.92 1639963 
I 34 73 0.119773306 .0.92 1639963 
I 35 73 0.119773306 .0.92 1639963 

I 36 73 0.119773306 .0.92 1639963 

I 37 74 0.056073321 · 1.25 1243722 

I 38 74 0.056073321 · 1.25 1243722 

I 39 75 0.0 19378 10 1 · 1.7 12688783 
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Figure 13.  Graph of MLE Fit to UTS Data 

4.2.2 Limitations of Least Squares and Maximum Likelihood Estimates 
As mentioned in Section 4.1.3, when there are fewer than 5 data points, MLE can give a biased 
estimate of a distribution.  MLE is the preferred option over LSE for deriving the parameters of a 
distribution when there are a large number of data points, usually more than 10.  In this section, 
this point will be reinforced by considering an instance where limited data is initially available.  
Later, additional data becomes available.  The distributions derived by LSE and MLE at both 
times are developed and compared. 

4.2.2.1 Initial Data and Forecast 
During inspections of this non-safety-of-flight titanium part over a 6 month period, cracks was 
discovered in 6 of 42 parts on 21 inspected aircraft. The inspection results and the flight hours 
when the cracks were found are presented in Table 4.  The total accumulated flight hours for 
each part are listed in the table.  A lifetime distribution was constructed using the following 
process in order to perform a reliability analysis to determine the magnitude of the issue.  Those 
parts without cracks are treated as suspended, or censored, data.  There are sophisticated 
techniques for handling suspensions [11] when the suspension times are mixed in amongst the 
failure times.  However, sometimes it is just easier to just consider the data from failed 
components and ignore the suspended data.  That is the approach that will be taken here.  No 
attempt was made to adjust the flight hours to a reference crack size. 
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Table 4.  Initial Cracking Data for Titanium Aircraft Part 

A/C Side 
Flight 
Hours 

Crack 
Size, in. Side 

Flight 
Hours 

Crack 
Size, in. 

1 LH 346.5 - RH 346.5 - 
2 LH 1424.4 - RH 1424.4 1.05 
3 LH 517.3 - RH 517.3 - 
4 LH 682.3 - RH 682.3 - 
5 LH 647.4 - RH 647.4 - 
6 LH 654.5 - RH 654.5 - 
7 LH 910.4 - RH 910.4 - 
8 LH 1249.7 2.56 RH 1249.7 - 
9 LH 415.1 - RH 415.1 - 
10 LH 1116.0 4.20 RH 1158.0 1.59 
11 LH 646.8 - RH 646.8 - 
12 LH 495.3 - RH 495.3 - 
13 LH 410.6 - RH 410.6 - 
14 LH 1094.6 - RH 1094.6 - 
15 LH 1125.0 - RH 1125.0 - 
16 LH 1301.0 1.00 RH 1301.0 - 
17 LH 921.7 - RH 921.7 - 
18 LH 429.0 - RH 429.0 - 
19 LH 846.6 - RH 846.6 3.20 
20 LH 767.5 - RH 767.5 - 
21 LH 839.8 - RH 839.8 - 

 

A Weibull probability plot was constructed for the six cracked parts as shown in Figure 14.  
Since there were only six data points, both LSE and MLE were used to find a model Weibull 
distribution.  The lines for these two fits are also shown in Figure 14.  For the LSE fit, the shape 
parameter was 5.76 and the scale parameter was 1,274 FH.  For the MLE fit, the shape parameter 
was 8.22 and the scale parameter was 1,257 FH.  It appears from Figure 14 that the LSE fit 
provides a better fit to the data.  In addition, the LSE fit provides a more conservative estimate of 
the POF for early failures such as at 846.6 FH. 
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Figure 14.  Weibull Probability Plot of Initial Cracking Data 

4.2.2.2 Additional Data and a Revised Lifetime Distribution 
Continuing inspections over the next several years resulted in cracking in all 21 affected aircraft 
and 41 of 42 parts.  These inspection results are presented in Table 5.  A revised lifetime 
distribution was constructed from these data for comparison to the original estimate.  These data 
were treated as 41 cracking failures with no suspensions and without attempting to adjust the 
data to a common crack length in updating the lifetime distribution. 

The updated LSE and MLE probability distribution fits to the data are shown on the Weibull 
probability plot in Figure 15.  For the LSE fit, the shape parameter was 3.75 and the scale 
parameter was 1,453 FH.  For the MSE fit, the shape parameter was 3.16 and the scale parameter 
was 1,468 FH.  The locations of both lines have moved to the right of the initial distribution 
estimates.  The shape parameter of the MLE fit distribution decreased by a factor of 2.5, while 
the shape parameter of the LSE fit distribution decreased by a factor of 1.5.  The difference 
between the updated LSE and MLE shape parameters was less than 20 percent.  Because of the 
large number of data points to which the Weibull distribution was fit, it is expected that the MLE 
provides the better fit to the data.  Visually, this does not appear to be the case, but the goodness 
of the fit will be quantitatively determined in Section 0 on goodness-of-fit testing. 

Notice in Figure 15 that the early failures (about 1,000 flight hours and less) have a steeper slope 
than the later failures.  This usually indicates that there are different failure mechanisms acting in 
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these two life regimes (e.g., surface vs. subsurface crack formation, large alpha particle vs. a 
scratch from a drill).  It could also be that those aircraft were flown more severely. 

Table 5.  Additional Cracking Data for Titanium Aircraft Part 

A/C Side Date 
Flight 
Hours 

Crack 
Size, in. Side Date 

Flight 
Hours 

Crack 
Size, in. 

1 LH 9/14/01 486.3 1.25 RH 8/12/02 874.2 1.00 
2 LH 5/8/02 1619.4 4.94 RH 9/22/00 1424.4 1.05 
3 LH 12/3/02 1222.9 1.30 RH 5/21/02 1222.9 1.00 
4 LH 9/13/01 1033.6 1.00 RH 5/24/01 946.6 2.38 
5 LH 6/9/03 1065.1 1.25 RH 1/7/05 1648.7 1.38 
6 LH - - - RH 11/13/02 1018.2 0.75 
7 LH 11/9/01 1429.3 3.00 RH 11/9/01 1429.3 1.90 
8 LH 1/25/01 1249.7 2.56 RH 10/31/05 2311.2 1.13 
9 LH 12/21/01 1000.2 2.50 RH 3/22/02 1191.2 0.84 
10 LH 1/4/01 1116.0 4.20 RH 1/19/01 1158.0 1.59 
11 LH 8/29/01 996.9 2.13 RH 6/13/02 1189.2 1.31 
12 LH 5/10/02 1756.0 1.00 RH 10/22/01 1043.0 1.25 
13 LH 4/12/02 954.8 1.87 RH 7/10/02 1139.0 1.15 
14 LH 10/30/02 1520.7 1.19 RH 10/12/01 1313.6 0.63 
15 LH 6/27/03 2292.0 1.13 RH 1/10/02 1772.2 1.06 
16 LH 9/22/00 1301.0 1.00 RH 7/5/05 2709.8 2.09 
17 LH 2/26/01 968.0 1.00 RH 3/20/01 968.0 3.50 
18 LH 7/30/03 1661.4 5.63 RH 4/15/03 1477.8 0.50 
19 LH 9/14/01 1127.0 0.81 RH 8/31/00 846.6 3.20 
20 LH 6/10/03 1604.0 0.91 RH 10/9/01 1200.7 0.88 
21 LH 10/9/01 1424.0 1.13 RH 10/9/01 1424.0 5.50 
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Figure 15.  Updated Lifetime Distribution From Additional Cracking Data 

4.2.3 Confidence Band for Normal Probability Distribution 
A confidence band is used to represent the uncertainty in the estimate of a probability 
distribution based on limited data.  Uncertainty in the probability distribution estimate decreases 
with an increasing amount of data resulting in a narrower confidence band.  Confidence bands 
are approximate and are generally more accurate with more data.  The real uncertainty is greater 
than the confidence band because assumptions were made about the data and the probability 
distribution used to model the data. 

A confidence band is defined in terms of a confidence level 100α% where (1-α) is the probability 
that all data in a sample of the specified size from a population will be within the confidence 
band.  As the parameter α decreases toward zero and the confidence level increases, the width of 
the confidence band also increases.  So, while a band with high confidence might be desired, 
such a confidence band may be so wide that it is of little value. 

In this section, a two-sided confidence band will be determined for the normal distribution used 
to describe the UTS data in Figure 13.  This band is for upper and lower probabilities for each 
value of UTS.  The steps and equations used apply only to normal and log-normal distributions.  
The steps for determining a two-sided confidence band are as follows [11]: 

Step 1. Determine the desired confidence level 100(1-α)%.  Confidence levels of 90 percent 
and 95 percent are common choices; 95 percent will be used in this example. 
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Step 2. Calculate kα/2 equal to Φ-1(α/2), where Φ-1(p) is the inverse of the standard normal 
distribution (mean of 0, standard deviation of 1).  The inverse of the standard normal 
distribution is the function that maps a probability p back to the value of the random 
variable x that is associated with the probability p in the standard normal function.  The 
value α/2 is used for a two-sided confidence bands since symmetry requires that half of 
the probability of being outside the confidence band be above the confidence band and 
half below.  For this example, 

𝑘𝛼 2⁄ = 𝛷−1 �
0.05

2
� = −1.96.                                            (27) 

Step 3. Choose a UTS value to calculate the values of the upper and lower confidence bands at.  
Then determine the standard normal variate for the value, 

𝑍 =  
𝑥 − 𝜇

𝜎
,                                                          (28) 

 where x is the UTS value, µ is the mean, and σ is the standard deviation.  Start at one 
end of the curve with x equal to 66 ksi. From Section 4.2.1, the MLE mean is equal to 
71 ksi, and the MLE standard deviation is 1.815.  Thus, 

𝑍 =  
66 − 71

1.815
= −2.755.                                          (29) 

 Note that Z is also the distance between the selected UTS value and the mean in units of 
standard deviations. 

Step 4. Compute the standard normal variates associated with the left and right band 
probabilities for the selected UTS value using the following equations: 

𝑧𝑙 ≅ 𝑍 + 𝑘𝛼 2⁄ �
1
𝑁

+
𝑍2

2(𝑁 − 1),                                             (30) 

𝑧𝑟 ≅ 𝑍 − 𝑘𝛼 2⁄ �
1
𝑁

+
𝑍2

2(𝑁 − 1),                                           (31) 

 where N is the number of data points in the sample.  In this example, N equals 34.  For 
a UTS of 66 ksi, 

𝑧𝑙 ≅ −2.755 + (−1.96)�
1

34
+

(−2.755)2

2(34 − 1) = −3.50,                        (32) 

𝑧𝑟 ≅ −2.755 − (−1.96)�
1

34
+

(−2.755)2

2(34 − 1) = −2.01.                      (33) 
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Step 5. Find the probability values associated with the left and right confidence bands at the 
selected UTS from the standard normal distribution function.  For this example, the 
probability Pl of the left confidence band at UTS of 66 ksi is 

𝑃𝑙 = Φ(−3.50) = 0.0002.                                               (34) 

The probability Pr of the right confidence band at 66 ksi is 

𝑃𝑟 = Φ(−2.01) = 0.0222.                                               (35) 

Step 6. Repeat Steps 3 through 5 to fill in the values in Table 6.  The resulting confidence band 
is plotted as the dashed curves in Figure 16.  The values in columns 1 and 3 are the y- 
and x-coordinates for the left dashed curve, respectively.  The values in columns 1 and 
5 are the y- and x-coordinates for the right dashed curve, respectively. 

Table 6.  Left and Right Confidence Band Probabilities 

UTS zl Pl zr Pr 

66 -3.4996 0.0002 -2.0101 0.0222 
67 -2.8329 0.0023 -1.5748 0.0576 
68 -2.1745 0.0148 -1.1314 0.1289 
69 -1.5305 0.0629 -0.6734 0.2504 
70 -0.9124 0.1808 -0.1895 0.4248 
71 -0.3361 0.3684 0.3361 0.6316 
72 0.1895 0.5752 0.9124 0.8192 
73 0.6734 0.7496 1.5305 0.9371 
74 1.1314 0.8711 2.1745 0.9852 
75 1.5748 0.9424 2.8329 0.9977 
76 2.0101 0.9778 3.4996 0.9998 

 



35 
Approved for public release; distribution unlimited. 

 
Figure 16.  Plot of Confidence Band for UTS Data 

4.2.4 Goodness-of-Fit Test  
Goodness-of-fit tests are a quantitative measure of whether the selected probability distribution 
fits the data.  A goodness-of-fit test produces a single number that is compared against a criterion 
to determine if the probability distribution adequately describes the variation in the data.  When 
two or more distributions satisfy the criterion, the numbers for each distribution provide a means 
to determine which distribution provides the best fit. 

There are many goodness-of-fit tests:  correlation coefficient, likelihood ratio, chi-squared, 
Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Cramer-von Mises (CvM), etc.  Each test 
has its own strengths and weaknesses.  For those distributions that can be plotted as a on a 
probability plot, the correlation coefficient, R2, provides a measure of the goodness of fit, i.e., 
how linear the data is.  When MLE is used to find the distribution parameters for more than one 
probability distribution, the distribution with the largest probability (cell C4 in Figure 12) is the 
distribution that best fits the data. 

The KS, AD, and CvM tests are all very similar.  They are based on the empirically determined 
distribution function.  They are only valid for continuous distributions that are completely 
specified, though all three have been modified to handle situations where the distribution 
parameters are estimated from the data sample.  The difference between these three tests is their 
test statistics.  Thus, the critical values for establishing that the fit of a distribution is acceptable 
are different.  But all three tests should yield the same conclusion though they each may be more 
discriminating for a particular distribution type.  The AD and CvM tests have an advantage over 
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the KS test in that they can be modified to handle censored samples where testing may have been 
stopped without a failure.  Because of this advantage, the AD test will be demonstrated here. 

4.2.4.1 Anderson-Darling Goodness-of-Fit Test 
The forty-one fatigue cracking data in Table 5 and the two Weibull probability distributions 
constructed using LSE and MLE in Section 4.2.2.2 will be used to demonstrate the AD test.  The 
calculation of the AD test parameter is shown in Table 7 and explained step-by-step in the text 
that follows. 

Step 1. List all the FH to cracking, ti, from smallest to largest in the first column.  Place the 
rank i for each cracking time in the second column.  The total number of data points N 
is 41. 

Step 2. Calculate the quantity (2i – 1)/N for each cracking time in the third column. 

Step 3. Calculate the expected probability F(ti) for each cracking time using the CDF for which 
the goodness-of-fit  is being tested.  The values are placed in the fourth column.  In this 
example, the distribution being tested is a Weibull distribution with shape parameter of 
3.16 and scale parameter of 1,468 FH. 

Step 4. In the fifth column, calculate the natural logarithm of each of the expected probabilities, 
ln[F(ti)], from the fourth column. 

Step 5. Calculate the natural logarithm of 1 minus the expected probability for the cracking 
time with rank N+1-i, ln[1-F(tN+1-i)], in the sixth column.  For example, for ti equal to 
486.3 FH, rank i equals 1, calculate the natural logarithm of 1 minus the expected 
probability for the cracking time with rank 41, or ti equal to 2,709.8 FH. 

Step 6. For each row in the table, calculate the quantity 

𝐴𝑖 = �
2𝑖 − 1

𝑁
� {𝑙𝑛[𝐹(𝑈𝑇𝑆𝑖)] + 𝑙𝑛[1 − 𝐹(𝑈𝑇𝑆𝑁+1−𝑖)]}                    (36) 

 in the seventh column, that is the value in column 3 times the sum of the values in 
columns 5 and 6. 

Step 7. Calculate the Anderson-Darling goodness-of-fit statistic as the sum of column 7 minus 
the number of data points N, 

𝐴𝑁
2 = − � 𝐴𝑖

𝑁

𝑖=1

− 𝑁.                                                      (37) 

Step 8. Compare the Anderson-Darling goodness-of-fit statistic, 𝐴𝑁
2 , to the allowable critical 

percentile value, 𝐴𝑐𝑟
2 (𝛼), for a specified significance level α from Table 8.  If 𝐴𝑁

2  is less 
than 𝐴𝑐𝑟

2 (𝛼), the test distribution is accepted at that level of significance.  A 
significance level of 0.05 is frequently chosen.  For this example, the goodness-of-fit 
statistic is 1.7224 which is less than the allowable critical value at all significance levels 
except α equal to 0.15.  The Weibull distribution with shape parameter of 3.16 and 
scale parameter of 1,468 FH provides a good representation of the times when fatigue 
crack were found.  
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Table 7.  Anderson-Darling Goodness-of-Fit Test for MLE Weibull Distribution 
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Table 8.  Allowable Critical Percentile Values for Anderson-Darling Test Statistic 

Significance, 
α 0.15 0.10 0.05 0.025 0.01 

𝑨𝒄𝒓
𝟐 (𝜶) 1.610 1.933 2.492 3.070 3.857 

 

4.2.4.2 Comparing Two Model Distributions with the Anderson-Darling Goodness-of-Fit 
Test 

Recall from Section 4.2.2.2 that the LSE fit to the cracking data in Table 5 gave a shape 
parameter of 3.75 and a scale parameter of 1,453 FH, instead of the MLE values of 3.16 and 
1,468 FH.  The AD goodness-of-fit test can be used to determine which of these two 
distributions provide the better model for the cracking data.  The model distribution with the 
lowest value of 𝐴𝑁

2 provides the better fit.  From Table 7, the value of 𝐴𝑁
2 for the Weibull 

distribution with MLE parameters is 1.7224.  𝐴𝑁
2 is calculated below in Table 9 for the Weibull 

distribution with LSE-derived parameters.  In this case, 𝐴𝑁
2 is equal to 1.6922.  Thus, the LSE fit 

Weibull distribution provides a slightly better fit to the crack data in Table 5 than does the MLE.  
This is despite the fact that with more data MLE is supposed to provide the better fit. 

4.2.5 Statistical Analysis in Statistical Software 
There are many statistical software packages available that can perform the statistical analysis of 
data and provide plots of the results.  Among these are Minitab®, SuperSMITH®, and Crystal 
Ball.  In addition, templates can be created in Excel to perform these analyses. 
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Table 9.  Anderson-Darling Goodness-of-Fit Test for LSE Weibull Distribution 
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5.0 LIFETIME DISTRIBUTIONS FROM ACTUAL FAILURE DATA 
5.1 Overview 
This section discusses how to construct the lifetime distribution for a population of engineering 
structures using failure data.  This approach does not consider the underlying physics of the 
failure.  It is based entirely on the time to failure and an assumption that all items in the 
population are similar. 

The probability distribution constructed in the probability plotting example of Section 4.1 is a 
lifetime distribution constructed from failure data.  The available data were times to failure 
during a test.  The goal was to construct the lifetime distribution from estimates of the 
probability of failure as a function of the test time. 

The failure data can be from tests or actual service.  Time can be expressed in terms of number 
of flight hours, number of flights, number of landings, etc. The Weibull distribution is frequently 
chosen to model the lifetime distribution from failure data.  The lognormal and exponential 
distributions are also sometime used.  The normal distribution is rarely used because it allows the 
possibility of having a failure before the part goes into service. 

This section also includes demonstrations of how the lifetime distribution can be used to make 
decisions regarding maintenance, modification and retirement of aircraft. 

5.2 Estimating the Lifetime Distribution 
5.2.1 Estimating Distribution Parameters 
Situations in which a single failure point, such as in a full-scale durability test, is all that is 
available to construct a lifetime distribution are common. When a single failure occurs, it is 
reasonable to interpret the observed test life as the mean of the probability distribution.  Unless 
there are reasons to suspect an early failure, a random sample is most likely to fail within +1 and 
-1 standard deviation of the mean life since a majority of the population should fail within one 
standard deviation of the mean. 

This assumption is conservative if the test article has two or more independent equivalent details 
– symmetric right- and left-hand sides for example.  In that case, a more rigorous estimate of the 
population percentile represented by the first failure can be obtained from Bernard’s median rank 
equation (Section 4.1.1).  Accordingly, the estimated population percentile of the first of two 
equivalent details to fail is the median rank value 

 𝑀𝑅 = (1−0.3)
(2+0.4) × 100% = 29.2%.                                           (38) 

Thus, the first test failure in this situation is an estimator for the 29.2 percentile population value. 

The above not withstanding, a single test failure will be assumed to be an estimator of the 
population mean.  The Weibull scale parameter (β) can be calculated from the test-estimated 
mean (µ) and the shape parameter using Equation (13), which is repeated here: 

 µ = β Γ(1+1/α) + t0,  (13) 
In Microsoft Excel, the value of the gamma function can be found using the following 
expression: 
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 Γ(1+1/α) = exp(GAMMALN(1+1/α)) (39) 
Table 10 provides the values of Γ(1+1/α) for several different values of the shape parameter α. 

Table 10.  Γ(1+1/α) Values for Select Values of α 

 

When there is only one test result or observation, the shape parameter α must be assumed.  
Freudenthal [12] has proposed the following characteristic Weibull shape parameters for 
aerospace metallic materials: 

• High strength steels (Ftu > 200 ksi): α = 2.0 to 2.5, 

• Titanium alloys: α = 2.5 to 3.0, 

• Low strength steels (Ftu < 200 ksi): α = 3.0 to 3.5,  

• Aluminum alloys: α = 3.5 to 4.5. 

The recommendations are based upon alloys and fabrication techniques from the 1960’s and 
1970’s, or earlier.  It is possible that developments in alloy processing have changed the scatter 
in some material properties.  It is also possible that fabrication practices dominate the scatter in 
structure, not some material characteristic.  These observations, along with the fact that statistical 
conclusions drawn from a single data point are always suspect, should be kept in mind when 
using the Freudenthal shape parameter values.  They are good estimates when there is not 
enough information to determine a shape parameter, but they are not absolute limits. 

In Section 3.2.3, it was noted that a shape parameter of 2 produced a Rayleigh distribution and a 
shape parameter in the range of 3 to 4 produced a symmetric distribution very similar in shape to 
a normal distribution.  The suggested shape parameters for all these materials are in this range. 
Thus, the characteristic shape parameter for aluminum alloys and low strength steel produce a 
symmetric (close to a normal) distribution.  While the characteristic shape parameter for titanium 
and high strength steel alloys produce Rayleigh–like distributions that are skewed in the 
direction of more frequent earlier failures. 

5.2.2 Weibull Distribution:  Estimated from a Single Failure 
The Forward Main Landing Gear (MLG) trunnion collar (Figure 17) failed during the full-scale 
landing gear durability test after 2,310 simulated landings.  The root cause was fatigue, 
originating at the threads.  The crack depth at failure was only 0.04 inches.  The life deficiency 
was confirmed by an element test of the trunnion. 
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The trunnion collar threads are loaded in tension and have a root radius of 0.005 inches to 0.009 
inches.  Due to the tolerance on root radius, the stress concentration factor (KT) ranges from 10 
to 13.  This wide variation in peak stress causes increased fatigue scatter. 

 
Figure 17.  Forward Main Landing Gear Trunnion 

At the time of test failure, 31 aircraft were already in service.  The purpose was to determine 
current risk and how it would increase as the 31 aircraft continued to operate.  A Weibull 
distribution was assumed.  With only a single failure point, the parameters of the distribution 
were estimated as follows. 

Since only the test failure time was known, two assumptions had to be made in the analysis: 

• The trunnion collar was made from 300M steel with Ftu = 280 ksi.  A Weibull shape 
parameter of α = 2.0 was assumed, the lower bound of the “typical range” for the 
material which represents more scatter than 2.5, the upper bound of the typical range. 

• The durability test failure time was assumed to be the mean (50 percent) of the 
distribution.  Equation (13) was used to find the scale parameter, or characteristic life: 

 𝛽 = 𝜇
𝛤�1+1

2�
= 2310

0.88623
= 2,605 landings.                            (40) 

Using α = 2.0 and β = 2,605 landings, the probability of a trunnion collar failure was calculated 
for a single Forward MLG on each of the 31 aircraft at the current number of landings as shown 
in Table 11.  Accounting for two forward trunnions on each aircraft (right-side and left-side), the 
summation for the fleet gave an expected number of (2 × 1.3 =) 2.6 failed trunnion collar in the 
fleet for the number of landings at that point in time.  Recall from Section 2.1 that Lincoln felt 
that more than 1 failure in a fleet during the service life was not acceptable.  Lincoln 
recommended that the number of failures in the fleet be kept below 0.5 to ensure this.  Clearly, 
the present design does not meet this criterion. 
  

Forward
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Aft
MLG FMLG 

Trunnion
Collar

Forward
MLG

Aft
MLG FMLG 

Trunnion
Collar
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Table 11.  Fleet Status and Expected Trunnion Failures Calculation 

 

The other criterion is based upon the SFPOF.  From Sections 3.1.7 and 3.1.8, the SFPOF is equal 
to the HRF, Equation (5), times a ∆t of one flight.  For a Weibull distribution (Section 3.2.3), the 
HRF is equal to 

ℎ𝑇(𝑡) = �
𝛼
𝛽

� × �
𝑡
𝛽

�
(𝛼−1)

.                                             (41) 
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In this example, with α = 2 and β = 2,605 landings, the SFPOF becomes, in terms of number of 
aircraft landings, t: 

 SFPOF = ∆t⋅hT(t) = 2.95 × 10-7 × t. (42) 
After one landing, the estimated SFPOF is greater than the value considered safe for long term 
military operation of 10-7 per flight.  And after 340 landings, the estimated SFPOF will exceed 
the value of 10-5 per flight, which is considered unacceptable. 

Based on this analysis, a proof-test retrofit program was conducted to remove cracked trunnion 
collars and to extend the life of uncracked parts.  Four trunnion collars failed during proof 
testing.  If they had remained in service and failed, each service failure would have resulted in a 
Class A mishap at over $1M each in damage.  The Weibull distribution estimated from a single 
test failure provided information that enabled decisions that protected the safety of the fleet. 

5.2.3 Weibull Distribution:  Estimating from Multiple Component Fatigue Tests with a 
Single Run-Out 

If several tests are conducted and each provides a measure of time to failure, the data can be 
plotted to obtain the best-fit Weibull parameters as discussed in Section 4.1.  But the problem 
becomes more complex when not all the times to failure are known.  This is the problem of 
“censored data.”  There are two types of censored data: 

• Right-censored data:  Tests that end before the desired failure point is obtained, either 
because the operator stops the test or because failure occurs but not by the relevant 
failure mode.  Also called “suspensions” or “run-outs.” 

• Left-censored data: Tests in which the failure occurs at some unknown point between 
time A and time B; for example between scheduled inspections. 

Censored data are an important consideration.  When some data are identified as censored, that 
usually increases the scale parameter.  The censored data must be taken into account in order to 
estimate the Weibull parameters that represent the population. 

Run-outs are tests that are stopped prior to failure.  A run-out is an example of “censored data” 
because the exact fatigue life is unknown, but the life is known to exceed the value reached 
without failure.  One method of estimating a distribution when the data include run-outs is the 
rank-regression method. 

Consider Table 12 which contains results from seven replicate tests, each stopped either at 
failure or at 5 design lifetimes.  The second column of the table shows that six specimens failed 
prior to five design lifetimes and the seventh specimen is a run-out, reaching 5 lifetimes without 
failure.  In this example the run-out is the seventh point in the rank order.  Following the method 
in Section 4.1, the six failure times are ranked from smallest to largest in the second column of 
Table 12.  The third column is the Bernard rank value, Equation (26), of F(t) for each point with 
the total number of data points N equal to seven. The fourth and fifth columns are x = ln(t) and 
y = ln{ln[1/(1-F(t))]}, the coordinate values of the Weibull plot. 

The Weibull distribution was fit to the values in the fourth and fifth columns for the six failure 
points in Table 12 using LSE.  The Weibull probability plot of these data and the distribution fit 
to the data is shown in Figure 18.  The LSE equation of the straight line through the six failure 
points is 
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 y = 2.8046x – 4.0195. (43) 
Extrapolating this straight line upward to y7 = 0.9054, an estimate of t7, the estimated life of the 
run-out, is 5.69 lifetimes. The estimated life is shown as a hollow red square; the original run-out 
is shown as a solid red square.  The estimated Weibull parameters for this problem are 
α = 2.8046, and β = exp(4.0195/2.8046) = 4.192 design lifetimes. 

Table 12.  Censored Data:  7 Tests with 1 Run-Out 

  

 
Figure 18.  Weibull plot of Data from Single Run-out Example 

Rank

Design 
Lifetimes, 

t
Bernard 

Rank, F(t) x  = ln(t)
y  =                 

ln{ln[1/(1-F(t))]}
Linear Est. 

of t
1 1.9 0.09459 0.64185 -2.308880 1.84030
2 2.5 0.22973 0.91629 -1.343182 2.59675
3 3.1 0.36486 1.13140 -0.789840 3.16312
4 3.7 0.50000 1.30833 -0.366513 3.67848
5 4.3 0.63514 1.45862 0.008195 4.20429
6 4.8 0.77027 1.56862 0.385842 4.81030
7 5+ 0.90541 1.60944 0.857880 5.69204
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This is another example of a situation where the MLE method does not produce a better answer 
than the LSE. 

The MLE estimated Weibull parameters are α = 3.901 and β = 4.011 design lifetimes. 

Figure 19 shows a graphical comparison of the MLE (green line) and the least squares (black 
line) results.  Clearly, the LSE provides a better fit to the sample data.  For data sets with a large 
number of data, MLE gives a better result.  However when there are less than five data points, 
and sometimes less than ten, the MLE can be biased [10].  In this example, the number of data 
points is six which is right in the middle of range where MLE should be used with caution. 

 
Figure 19.  MLE and LSE Weibull Distributions for Single Run-Out Example 

5.2.3.1 Confidence Band for Weibull Distribution 
In this section, a two-sided confidence band will be determined for the Weibull distribution used 
to describe the fatigue life data in Table 12 and Figure 18.  This band is for upper and lower 
probabilities for each fatigue life.  The equations used apply only to Weibull distributions.  
Recall from Section 0 that confidence bands are only approximate and are generally more 
accurate with more data.  The steps for determining a two-sided confidence band are as follows 
[11]: 

Step 1. Determine the desired confidence level 100(1-α)%.  Confidence levels of 90 percent 
and 95 percent are common choices; 95 percent will be used in this example. 
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Step 2. Calculate kα/2 equal to Φ-1(α/2), where Φ-1(p) is the inverse of the standard normal 
distribution (mean of 0, standard deviation of 1).  The inverse of the standard normal 
distribution is the function that maps a probability p back to the value of the random 
variable x that is associated with the probability p in the standard normal function.  The 
value α/2 is used for a two-sided confidence bands since symmetry requires that half of 
the probability of being outside the confidence band be above the confidence band and 
half below.  For this example, 

𝑘𝛼 2⁄ = 𝛷−1 �
0.05

2
� = −1.96.                                             (44) 

Step 3. Choose a fatigue life t to calculate the values of the upper and lower confidence bands 
at.  Then determine the quantity 

𝑈 =  𝛼[𝑙𝑛(𝑡) − 𝑙𝑛(𝛽)],                                                 (45) 

 where α is the shape parameter, and β is the scale parameter.  From Equation (23), 

𝑈 = 𝑙𝑛 �𝑙𝑛 �
1

1 − 𝑃(𝑡)
��                                                 (46) 

  Start at one end of the curve with t equal to 1 design lifetime. Then, 

𝑈 =  2.8046[𝑙𝑛(1) − 𝑙𝑛(4.192)] = −4.0195.                              (47) 
Step 4. Compute the parameters associated with the lower and upper band probabilities for the 

selected fatigue life using the following equations: 

𝑢𝑙 ≅ 𝑈 + 𝑘𝛼 2⁄ �1.168 − 0.1913𝑈 + 1.1𝑈2

𝑁
,                             (48) 

𝑢𝑢 ≅ 𝑈 − 𝑘𝛼 2⁄ �1.168 − 0.1913𝑈 + 1.1𝑈2

𝑁
,                            (49) 

 where N is the number of data points in the sample.  In this example, N equals 6.  For a 
fatigue life of 1 design lifetime, 

𝑢𝑙 ≅ −7.5717, and 𝑢𝑢 ≅= −0.4672. 
Step 5. Find the probability values associated with the lower and upper confidence bands at the 

selected fatigue life from Weibull CDF, 

  Pi = 1 – exp[-exp (ui)]. (50) 
For this example, the probability Pl of the lower confidence band at a fatigue life of one 
design lifetime is 

𝑃𝑙 = 1 − 𝑒𝑥𝑝[−exp(−7.517)] = 0.0005.                                (51) 

The probability Pr of the upper confidence band at one design lifetime is 
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𝑃𝑢 = 1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(−0.4672)] = 0.4657.                                 (52) 

Step 6. Repeat Steps 3 through 5 to fill in the values in Table 13.  The resulting confidence 
band is plotted as the dashed curves in Figure 20.  The values in columns 1 and 3 are 
the x- and y-coordinates for the left dashed curve, respectively.  The values in columns 
1 and 5 are the x- and y-coordinates for the right dashed curve, respectively.  The 95 
percent confidence band for this example is large because only 6 data points were 
available to construct the distribution. 

Table 13.  Data Points for 95 Percent Confidence Band for Weibull Distribution 

Life, 
Design 

Lifetimes ul Pl uu Pu 
1 -7.5717 0.0005 -0.4672 0.4657 

1.5 -5.5189 0.0040 -0.2457 0.5426 
2 -4.0844 0.0167 -0.0666 0.6076 

2.5 -3.0006 0.0485 0.1013 0.6693 
3 -2.1560 0.1093 0.2794 0.7335 

3.5 -1.5010 0.1998 0.4890 0.8042 
4 -1.0125 0.3046 0.7495 0.8795 

4.5 -0.6679 0.4012 1.0656 0.9451 
5 -0.4327 0.4773 1.4213 0.9841 

5.5 -0.2694 0.5341 1.7927 0.9975 
6 -0.1506 0.5769 2.1619 0.9998 

6.5 -0.0594 0.6103 2.5197 1.0000 
7 0.0139 0.6372 2.8621 1.0000 

7.5 0.0750 0.6597 3.1879 1.0000 
8 0.1274 0.6789 3.4975 1.0000 

8.5 0.1734 0.6956 3.7917 1.0000 
9 0.2143 0.7103 4.0713 1.0000 

9.5 0.2513 0.7235 4.3376 1.0000 
10 0.2851 0.7355 4.5915 1.0000 
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Figure 20.  Weibull Probability Plot Showing 95 Percent Confidence Band 

5.3 Using the Lifetime Distribution to Forecast Fleet Failures 
The main purpose for constructing a lifetime distribution is to be able to forecast the expected 
number of failures in a given time period.  Because of the uncertainties and the scarcity of data, 
these forecasts may not be highly accurate.  But they provide a feel for the magnitude of the risks 
being taken if remedial action is not taken.  However, if the forecasted expected number of 
failures seems to be way out of line with reality, then it is possible that something is being 
overlooked in the analysis.  As Laplace, the father of probability theory, said, “probability theory 
is nothing but common sense reduced to calculation.”  This quote applies equally well to 
structural reliability theory.  So, if a result does not agree with your common sense, you need to 
investigate why it does not agree. 

In the following sections several examples of forecasting the expected number of failures will be 
worked. 

5.3.1 Basic Forecast of the Expected Number of Failures in a Fleet 
A forecast of the expected number of failures in a fleet of 20 aircraft at a particular location is 
needed as a function of flight hours in order to support the scheduling of inspections and repairs.  
For this example, assume that data have established that the lifetime distribution is well 
represented by a Weibull distribution and that estimates of the relevant parameters for the 
Weibull distribution are a shape parameter α of 4.0 and a scale parameter β of 1,000 FH.  Table 
14 shows the current FH status of the fleet. 
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Table 14.  Fleet Status and Cumulative Number of Failures Expected 

 

With the lifetime distribution, it is easy to calculate the cumulative number of failures expected 
in the fleet prior to some time.  The expected number of failures Nf for n aircraft each having 
been flown a unique number of flight hours ti is given by 

𝑁𝑓 = � 𝐹(𝑡𝑖),
𝑛

𝑖=1

                                                          (53) 

where F(t) is the lifetime distribution.  In this example, F(t) is a Weibull distribution with a 
shape parameter of 4.0 and a scale parameter of 1,000 flight hours. 

The cumulative numbers of failures expected now (current status) and by the end of the next 
month are calculated in third and fifth columns of Table 14 as follows.  While it is nonsense to 
talk about the expected number of failures for the past or present (the failures either occurred or 
not), the value of the lifetime distribution can be found at the current time for purposes of 
determining the expected number of failures during the next month. 

Step 1. Determine current Weibull F(t) for each aircraft using α = 4.0 and β = 1,000 service FH 
(Column 3 of Table 14). 
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Step 2. Sum F(t) for each aircraft to estimate cumulative number of failures expected at the 
current time. 

Step 3. Add the number of flight hours expected to be flown in the next month to the Current 
Flight Hours in column 2 to get the age of each aircraft at the end of the next month.  
This is the value in column 4 of Table 14.  In this example, 20 FH were added to the 
current flight hours for each aircraft. 

Step 4. Determine Weibull F(t) for each aircraft (Column 5 of Table 14) and sum to estimate 
cumulative number of failures expected one month from now (0.145). 

Step 5. Repeat step 3 for the other 11 months (not shown in Table 14). 

The cumulative number of failures expected for the next 12 months are plotted in Figure 21.  The 
number of failures expected during each month is the difference between the cumulative number 
of failures expected in a month and the preceding month.  The number of failures expected 
monthly is plotted as the red curve in Figure 21.  Though the analysis indicates that one failure in 
the fleet can be expected to occur during the next 12 months, the chance of the failure occurring 
in any particular month is quite low. 

Note: If the lifetime distribution is developed from test data rather than service data, then a 
standard test spectrum was likely used in all the tests.  The flight hours determined from the 
lifetime distribution are based upon this standard test spectrum.  When applying this test-derived 
time to aircraft in service, the actual flight hours at which failure would be expected needs to 
consider the severity of the service load history relative to the test spectrum.  If the service 
history is more severe than the test spectrum in terms of its potential for increasing the size of a 
crack that might be in the structure, then the actual flight hours to failure will be less than test-
derived time to failure as determined by using the concept of equivalent flight hours [13].  If the 
service history is less severe than the test spectrum, then the actual flight hours to failure will be 
more than the test-derived time. 
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Figure 21.  Number of Fleet Failures Expected by Month  

5.3.2 Forecasting When to Rework Structural Detail 
The airframe for a fighter aircraft experienced significant cracking at the base of a fuselage lug 
where the wing attaches during the full-scale durability test.  The material was Ti-6Al-4V, Beta 
Annealed.  Based on the crack initiation life in the test, the estimated mean flight hours µ when a 
major repair is required was 9,663 FH. 

Before the short-life detail could be re-designed, 52 aircraft had been built with the original 
design, both left and right sides.  The plan for these aircraft was to rework the lugs early enough 
to only perform a minor blend.  To minimize the impact on operations, the question was, “How 
urgent is the scheduling of that rework?”  This trade-off called for an estimate of the expected 
number of major repairs that would be required as a function of the flight hour limit for the 
rework. 

The calculations required a Weibull shape parameter appropriate for titanium.  Plotted results in 
Figure 22 are for the range of shape parameters for Titanium, α = 2.5, 2.75, and 3.0.  The 
Weibull scale parameter β for each assumed α is calculated from Equation (13), which is 
repeated here, and values of the Γ-function from Table 10: 
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 µ = β Γ(1+1/α) + t0. (13) 
The scale parameter associated with each shape parameter value is calculated in Table 15. 

Table 15.  Scale Parameter Calculated from Distribution Mean 

 
The cumulative number of repairs expected before time t is given by F(t) times 104, the number 
of affected details on the 52 affected aircraft.  For example, for α of 3.0 and β of 10,821 FH at 
1,850 FH, the value of the Weibull distribution is 0.005 and the cumulative number of repairs 
expected is 0.52.  The cumulative number of repairs expected as a function of flight hours is 
plotted for all three shape parameters in Figure 22.  To minimize the chance of a major repair, 
the rework should be completed prior to the cumulative number of repairs expected in the 52 
aircraft becoming 0.5.  The analysis indicates that the rework should begin before each aircraft 
reaches 1,300 FH, but certainly no later than 1,800 FH. If the rework were scheduled according 
to the traditional practice of the test life divided by four, the time limit for the rework to begin 
could be extended to 2,400 FH but there is a good probability that at least one major repair 
would be required. 

 
Figure 22.  Time Limit to Begin Wing Lug Rework 



54 
Approved for public release; distribution unlimited. 

 

6.0 LIFETIME DISTRIBUTIONS FROM THE PHYSICS OF FAILURE 
6.1 Overview 
In many instances, it is possible to estimate the lifetime distribution for a structure or a 
component from the physics of the problem before any reliability tests have been performed or 
failures occur in service.  This is accomplished by estimating how likely the loads applied to the 
structure are to exceed the resistance of the structure to failure, i.e., the strength.  Thus, 
probability distributions to describe the variability and uncertainty in the applied loads L and the 
structural strength S are required. 

If the uncertain strength S of a structure is described by the PDF fS(s), then a structural 
component subjected to a known load l has a probability of failure Pf of 

𝑃𝑓 = 𝑃𝑟(𝑆 ≤ 𝑙) = 𝐹𝑆(𝑙)                                               (54) 

where FS(s) is the CDF of the strength.  In general, the applied loads are also variable and 
uncertain.  The probability of the applied load L occurring is then described by a PDF fL(l).  If 
the loads are independent of the strength, then the probability of failure is determined by 

𝑃𝑓 = 𝑃𝑟(𝑆 ≤ 𝐿) = 𝑃𝑟(𝑆 − 𝐿 ≤ 0) = Pr �
𝑆
𝐿

≤ 1� = 

� 𝑓𝑆(𝑥)𝑓𝐿(𝑦)𝑑𝑦𝑑𝑥,
 

𝐷

                                                    (55) 

where D is the domain of integration indicated in Figure 23.  Integration results in either of the 
following two equations: 

� 𝑓𝑆(𝑥) � 𝑓𝐿(𝑦)𝑑𝑦𝑑𝑥
∞

𝑥

∞

0

= � 𝑓𝑆(𝑥)[1 − 𝐹𝐿(𝑥)]𝑑𝑥
∞

0

= � 𝑓𝑆(𝑥)𝐷𝐿(𝑥)𝑑𝑥
∞

0

,        (56) 

where FL(x) is the CDF for fL(x) and DL(x) is the EDF; or 

� 𝑓𝐿(𝑦) � 𝑓𝑆(𝑥)𝑑𝑥𝑑𝑦 =

𝑦

0

∞

0

� 𝑓𝐿(𝑦)𝐹𝑆(𝑦)𝑑𝑦
∞

0

.                      (57) 

This is the fundamental equation in structural reliability theory [8].  Applications of the 
fundamental equation are presented in this section.  The situation of one random variable, 
strength, was briefly discussed above and is further developed in the next section.  Then, the 
more complex situation of two random variables is discussed.  Finally, the section concludes 
with the situation of three random variables. 
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Figure 23.  Integration Domain for Reliability Integral  

The resistance to failure, or strength, degrades with continued operation as a result of fatigue 
crack growth, for instance.  This adds more uncertainty, as well as complexity, to the 
mathematical description.  This situation of strength degradation is not dealt with in this volume.  
It will be discussed in a later volume of this handbook.  Since the POF beyond the next flight is 
not considered here, the SFPOF, or failure rate, as a function of time cannot be calculated in the 
examples that follow. 

6.2 Probability of Failure:  One Random Variable 
The situation of having only one random variable in a structural reliability problem is unlikely to 
occur.  This problem is presented as a building block to the more realistic situations of two, 
three, or four random variables. 

A simplistic example of a single random variable problem would be testing a number of coupons 
in a test machine by applying the same maximum stress to each coupon. If the strength of a 
specific coupon is greater than the maximum stress, the coupon will not fail.  If the strength is 
less than the maximum stress, it will fail.  But until the test is performed, it is uncertain as to 
whether the strength of an individual coupon is greater than, equal to, or less than the applied 
stress.  The strength of any one coupon is thus described by a probability distribution. 

Suppose the coupons being tested come from different lots of a material for which the UTS is 
known to be normally distributed with a mean of 71.0 ksi and a standard deviation of 1.815.  
(This is the distribution from Section 4.2.1.)  A normal distribution is not usually recommended 
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for random variables that do not have values less than or equal zero.  But in this instance, the 
probability of a UTS less than zero is 

𝑃𝑟(𝑈𝑇𝑆 ≤ 0) =  𝛷 �
0 − 71
1.815

� = 𝛷(−39.12) = 0,                          (58) 

where Φ(z) is the standard normal distribution. Suppose that each coupon is placed in a testing 
machine and loaded in tension to a stress of 65 ksi.  The probability that any one coupon will fail 
under this stress is the probability that the strength is less than or equal to 65 ksi, 

POF = 𝑃𝑟(𝑈𝑇𝑆 ≤ 65 𝑘𝑠𝑖) = 𝛷 �
65 − 71

1.815
� = 𝛷(−3.31) = 0.00047.        (59) 

6.3 Probability of Failure:  Two Random Variables 
A structural reliability problem involving two or more random variables is more typical.  This 
would be the case where there is uncertainty about the maximum load that a structural will 
experience in some period of time and also uncertainty about the strength of the structure.  
Usually, the maximum load and the strength of a structure are independent so that Equation (56) 
can be used.  However, the product of a PDF and an EDF is not usually a function that can be 
readily integrated.  Numerical integration is required. 

6.3.1 Two Random Variables Example:  Strength and Maximum Load 
This example is derived from a presentation by Cornog and Lincoln at the 1988 Aircraft 
Structural Integrity Program Conference [14].  Because of increased weight and changes in the 
load spectra experienced by the F-16, a static test of an F-16C wing produced in the Block 30 
configuration was conducted to determine the static margin of safety.  The design Wing Bending 
Moment (WBM) for this configuration had increased 22 percent from the original F-16A design. 

The left wing failed near the root due to compressive buckling at 128 percent of Design Limit 
Load (DLL), Figure 24.  Restrictions were placed on the F-16C/D fleet that maintained a 1.5 
factor of safety but a decision had to be made as to whether or not to modify the wing to the 
restore the original ultimate load capability.  The probability of an unmodified wing buckling in 
service was calculated in order to help make the decision of whether or not to modify the wing.  
Thus, the POF in this example is the probability of the upper wing skin buckling. 

It was decided that an acceptable level of risk for the wing would be the risk routinely accepted 
by the public when driving an automobile during an average commute, or the POF during a flight 
should be less than 10-7, and that the expected number of failures in the fleet should be less than 
one airframe.  The POF during a flight calculated in this example is the failure distribution 
evaluated over an increment of time equal to one flight.  It is not the product of the hazard rate 
and an increment of time.  Thus, it is not the SFPOF as defined in this handbook. 
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Figure 24.  F-16 Block 30 Wing Failure at 128 Percent DLL 

The steps for calculating the POF during a flight are: 

Step 1. Use Equation (56), 

𝑃𝑓 = 𝑃𝑟(𝑆 ≤ 𝐿) = 𝑃𝑟(𝑆 − 𝐿 ≤ 0) = � 𝑓𝑆(𝑥)𝐷𝐿(𝑥)𝑑𝑥
∞

0

.                    (56) 

Step 2. Estimate the PDF for the strength of a wing, fS(x), 
Step 3. Estimate the EDF for the maximum load experienced during a flight, DL(x), 
Step 4. Substitute these distributions into Equation (56), and perform the numerical integration. 

The estimation of the distributions and numerical integration of their product are discussed in the 
following sections. 

6.3.1.1 Estimation of the Distribution for the Strength of a Wing 
It was decided to model the distribution of strength with a two parameter Weibull distribution.  
The Weibull is good choice for a distribution when there is little data because as noted in Section 
3.2.3, it can describe symmetric distributions like a normal distribution or skewed distributions 
like the lognormal. 

The test failure was caused by buckling and was influenced by wing skin and spar thicknesses, 
the material properties of the skin and spar, and boundary conditions.  Accordingly, wing skin 
and spar thicknesses were measured on a number of aircraft. Properties of the wing skin and spar 
materials and variation of the properties were reviewed.  These data were used to infer mean and 
scatter values for the Weibull strength distribution.  As explained in [14], Cornog and Lincoln 
concluded that a Weibull shape parameter of 24 was appropriate.  This value is similar to the 
Weibull shape parameter of 19 estimated for the ultimate strength of aircraft structure by 
Freudenthal and Wang [15].  The thickness and material properties of the failed wing were all 
found to be nominal with respect to samples of other wings.  This fact justified the assumption 
that the failure of the test wing at 128 percent DLL was a reasonable estimate of the mean 
strength.  A value of 130.9 percent DLL for the scale parameter was found using Equation (13), 
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 β = 128% DLL/ Γ(1+1/24) = 128% DLL/0.9776 = 130.9% DLL, (60) 
where Γ(…) is the gamma function. 

The coefficient of variation (ratio of mean to standard deviation) provides a check on the 
reasonableness of the values for the shape and scale parameters.  This combination of parameters 
gives a coefficient of variation of 5.2 percent. Typically, the coefficient of variation for strength 
should be less than 10 percent. 

The PDF for the Weibull distribution with values of 24 and 130.9 percent DLL for the shape and 
scale parameters is shown in Figure 25. 

 
Figure 25.  Weibull PDF for Wing Strength 

6.3.1.2 Estimation of the Exceedance Distribution for the Maximum Stress per Flight 
About 7,500 hours of recorded flight data from the F-16A/B aircraft were available and were 
considered to be representative of the loads to be encountered by the F-16C/D.  Since the Air 
Combat Maneuver mission had a dominant effect on the frequency of the larger loads, this 
mission was chosen to represent the loads in the probability of failure calculation [14].  The 
number of load exceedances per 1,000 hours for this mission is given in Table 16.  A graph of 
the exceedance curve is presented in Figure 26.  The magnitude of the loads was normalized by 
the wing root bending moment at Design Limit Load. 
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Table 16.  Load Exceedances for Dominant Mission 

Wing Bending 
Moment  
(% DLL) 

Exceedances 
per 1000 Flight 

Hours 

Exceedances per 
Flight  

(880 flights/1000 
FH) 

Probability of 
Exceeding WBM 
during a Flight 

60 1468 1.67 1 
65 1118 1.27 1 
70 629 0.71 0.71 
75 265 0.30 0.30 
80 70 0.08 0.08 
85 15 0.02 0.02 
90 3 0.003 0.003 
91 2 0.002 0.002 

 

 
Figure 26.  Wing Bending Moment Exceedances per 1000 Hours 

The load exceedances per 1,000 hours must be converted to the EDF for a flight.  In this 
particular application, the probability of exceeding percent DLL was derived from the number of 
exceedances per 1,000 hours as follows: 
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Step 1. Convert the exceedances per 1,000 hours to the number of exceedances per flight by 
dividing the counts by the average number of flights in 1,000 hours. There were 880 
flights in 1,000 flight hours. This is the third column in Table 16. 

Step 2. If the number of exceedances per flight for a load is greater than or equal to 1, then the 
probability of exceeding that load is one.  If the number of exceedances per flight for a 
load is less than 1, then the probability of exceeding that load is the exceedances per 
flight.  This is the fourth column in Table 16. 

Step 3. Extrapolate the probability of exceedances to at least the limit condition (100 percent 
DLL), if the curve does not extend to that level already.  While the load should never 
exceed limit load, there are rare over-g events that can be considered in the reliability 
analysis.  So the EDF can be extrapolated beyond 100 percent DLL, but there is no 
need to go beyond 150 percent DLL. 

When steps 1 and 2 were performed, the resulting Exceedance Distribution Function (EDF) per 
flight shown in Figure 27 was obtained.  Cornog and Lincoln extrapolated to higher bending 
moments using a Weibull distribution fit to the exceedance distribution below 90 percent DLL. 

 
Figure 27.  Probability of Exceeding WBM in a Flight 

The Weibull distribution was extrapolated as follows.  The values 70 percent to 91 percent DLL 
along with the associated probability of occurrence were graphed on a Weibull probability plot 
as shown in Figure 28.  The probability of occurrence is one minus the probability of 
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exceedance.  The probability of occurrence for 60 percent and 65 percent DLL is zero which 
cannot be plotted on a Weibull plot.  A LSE line was fit to just the four highest load points: 80 
percent, 85 percent, 90 percent, and 91 percent DLL.  These four points had a correlation of 99.7 
percent .Whereas, when all the points were considered the correlation was 97.5 percent .The 
shape parameter for the Weibull distribution (the slope of the line) is 6.74.  The scale parameter 
is 69.5 percent DLL. 

 
Figure 28.  Weibull Extrapolation of WBM EDF 

The final EDF for Wing Bending Moment in a flight was extrapolated to 150 percent DLL using 
the probabilities in Table 16 up to 75 percent DLL and the Weibull distribution above 80 percent 
DLL.  The EDF at 5 percent DLL increments are given in Table 17 and graphed in Figure 29.  
The Wing Bending Moment reaching even 125 percent of the limit condition appears to be an 
extremely rare event, once in approximately 1023 flights. 
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Table 17.  Points of the Exceedance Probability Distribution 

Wing Bending 
Moment  
(% DLL) 

Probability of 
Exceeding WBM 
during a Flight 

60 1 

65 1 

70 0.71 

75 0.30 

80 0.077 

85 0.021 

90 0.0034 

95 0.00028 

100 9.60E-06 

105 1.10E-07 

110 2.89E-10 

115 1.35E-13 

120 7.16E-18 

125 2.67E-23 

130 3.96E-30 

135 1.21E-38 

140 3.58E-49 

145 4.27E-62 

150 7.59E-78 
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Figure 29.  EDF for WBM in a Flight Extrapolated to 125 Percent Limit WBM 

6.3.1.3 Numerical Integration of the Probability of Failure Integral 
Figure 30 presents a comparison of the PDF of wing strength and the single flight EDF of wing 
bending moment.  Note that the two curves are plotted on different scales.  The structural 
reliability integral of Equation (56) integrates the product of these two curves over the domain of 
both functions. This integral must be evaluated numerically usually.  This section steps through 
the numerical integration using an Excel spreadsheet. 

There are many techniques for performing numerical integration.  Any approach that is 
appropriate for these functions can be used.  The trapezoidal rule will be used here to illustrate 
the concept.  The calculation is performed using Table 18.  The WBM range is divided into 
discrete intervals ∆ of the same length, 5 percent DLL.    The first column contains the Wing 
Bending Moment (WBM) at the endpoint of each interval in percent DLL.  The strength PDF 
and load EDF are evaluated at the endpoint of each interval in the second and third columns, 
respectively.  The product of the PDF and the EDF, denoted as H(%DLL), is computed for each 
endpoint in the fourth column.  Then, the trapezoidal rule computes the integral as 

𝑃𝑂𝐹 =  
𝛥
2

(𝐻(45) + 2𝐻(50) + 2𝐻(55) + ⋯ + 2𝐻(145) + 𝐻(150)).       (61) 
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The resulting POF during a flight is shown at the bottom of Table 18.  Remember the POF 
during a flight calculated in this example is the lifetime distribution evaluated for an increment 
of one flight.  Since degradation of the structure is not considered, the increment of the lifetime 
distribution is the same for every flight. The total lifetime distribution is equal to the POF times 
the number of flights NF, 

𝐹𝐿(𝑁𝐹) = 3.76 × 10−6𝑁𝐹 .                                              (62) 
The expected number of wing failures Wf in the fleet is equal to the lifetime distribution times 
the number of aircraft in the fleet NA, 

𝑊𝑓(𝑁𝐹 , 𝑁𝐴) = 3.76 × 10−6𝑁𝐹𝑁𝐴,                                        (63) 
since a unique feature of the left hand wing was of concern. 

 
Figure 30.  Plot of Load EDF and Wing Strength PDF  
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Table 18.  Probability of Failure for Wing Buckling 

 

6.3.2 Sensitivity Study for the Probability of Failure 
There are never sufficient data available to demonstrate that a particular probability model is 
correct for the application.  There is seldom sufficient data available to provide precise estimates 
of the parameters of the model.  Even when directly using an observed exceedance curve from 
operational data (i.e. without an assumed probability model), there is a question of fitting and 
extrapolating at the highest stress levels.  Because of such unknowns, there is no available 
quantitative measure of the potential error in POF estimates.  Therefore, the sensitivity of the 
calculated POF to the distribution models chosen and the parameters of the distribution should 
always be investigated.  If the opportunity to gather additional data becomes available as in the 
example of Section 4.2.2, the sensitivity analysis indicates what additional data will increase 
confidence in the POF estimate. 

This section assesses the sensitivity of the POF calculated in Section 6.3.1 to changes in the 
parameters of a distribution.  Changes in the shape parameter of the load exceedance distribution 

WBM 
(% DLL)

Strength PDF, 
f S

Load EDF, 
D L H  = f S  * D L 

45 3.96E-12 1 3.96E-12
50 4.47E-11 1 4.47E-11
55 4.00E-10 1 4.00E-10
60 2.96E-09 1 2.96E-09
65 1.86E-08 1.0000 1.86E-08
70 1.03E-07 0.7148 7.33E-08
75 5.01E-07 0.3011 1.51E-07
80 2.21E-06 0.0766 1.69E-07
85 8.92E-06 0.0210 1.87E-07
90 3.32E-05 0.0034 1.13E-07
95 1.15E-04 2.80E-04 3.22E-08
100 3.74E-04 9.55E-06 3.57E-09
105 1.15E-03 1.06E-07 1.21E-10
110 3.30E-03 2.86E-10 9.46E-13
115 8.92E-03 1.33E-13 1.18E-15
120 2.19E-02 7.00E-18 1.54E-19
125 4.56E-02 2.58E-23 1.18E-24
130 6.70E-02 3.78E-30 2.53E-31
135 4.58E-02 1.14E-38 5.20E-40
140 5.69E-03 3.28E-49 1.86E-51
145 1.68E-05 3.79E-62 6.37E-67
150 1.622E-11 6.47E-78 1.05E-88

POF = 3.76E-06
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are in the range where the Weibull distribution becomes equivalent to an exponential, Rayleigh, 
and normal distributions.  Thus, the sensitivity of the POF calculation to assumptions about the 
distribution type is also explored.  If the calculated POF is found to change significantly with 
changes to either the distribution model or the parameters, this highlights where effort should be 
made to gather more information and data to increase confidence in the distribution models and 
ultimately the POF. 

First, the sensitivity of the POF calculation to the size of the integration interval is investigated to 
be sure that the POF integration has converged.  Then, parameter values for the strength 
distribution, and parameter values for the load exceedance distribution are investigated. 

6.3.2.1 Sensitivity of the Probability of Failure to the Size of the Integration Increment 

The integration increment, ∆ in Table 18, is large which may introduce significant error into the 
calculation of the POF.  At a minimum, two calculations of POF should be made using 
increments that are significantly different to be sure that the POF is not significantly 
underestimated or overestimated by the integration scheme.  However, it is better if a number of 
POF calculations with different strength/load increment sizes are performed in the event that 
there are oscillations in the convergence of the reliability function.  The POF can be considered 
converged if the change in POF with changes in the strength/load increment size is less than 
some value.  What this value should be is problem dependent, but it should never be more than 
10% of the POF. 

The second calculation of POF uses an integration increment of 0.5 percent DLL.  The 
integration is truncated at 105 percent DLL since the values in Table 18 indicated that there is 
very little probability of a failure at WBM values above 105 percent DLL.  For WBM values less 
than 90 percent DLL, the load EDF was only defined at every 5 percent DLL.  The load EDF 
was interpolated between the known points using the equation 

𝐹𝐿(𝑥) = 10�𝑙𝑜𝑔(𝐹𝐿(𝑥𝑖))+�𝑙𝑜𝑔(𝐹𝐿(𝑥𝑖))−𝑙𝑜𝑔(𝐹𝐿(𝑥𝑖+1))
𝑥𝑖−𝑥𝑖+1

�(𝑥−𝑥𝑖)�,                       (64) 
where xi is a value in the first column of Table 17, xi+1 is the value in the row below, and x is a 
WBM value greater than xi and less than xi+1.  For WBM values greater than 90 percent DLL, 
the load EDF is defined in terms of a Weibull distribution so EDF values at increments of 
0.5 percent DLL can be easily calculated.  The strength PDF is defined as a continuous 
distribution over the entire domain.  The details of the calculation are presented in Table 19.  For 
this smaller integration increment, the POF during a flight was calculated to be 3.73 x 10-6.  This 
is less than a 1 percent difference.  Thus, the POF integration has converged at 5 percent DLL 
increments.  An increment of 5 percent DLL will be used in the remainder of the sensitivity 
analysis. 
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Table 19.  Calculation of POF during a Flight Using 0.5 Percent DLL Intervals 
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6.3.2.2 Assessing Sensitivity to Parameters of the Strength Distribution 
The strength was assumed to follow a Weibull distribution whose mean was assumed to be equal 
to the one known failure at 128 percent DLL.  The shape parameter was estimated to be 24.  
Freudenthal and Wang [15] found the shape parameter for the ultimate strength of critical 
elements of the airframe, and thus of airframes, to be 19.  Data on the strength of C-141 wing 
component and full-scale wing tests in Campion, et al., [16] can be fit by a Weibull distribution 
with a shape parameter of 16.  The shape parameter of the Weibull distribution determines the 
scatter about the mean; a large shape parameter means less scatter. 

First, look at how the POF changes as the mean of the strength distribution changes, and thus the 
scale parameter changes.  Remember from Section 6.3.1.1, Equation (30) that with a shape 
parameter of 24 the scale parameter β is equal to 

 β = µ / 0.9776. (65) 
The POF as a function of the mean of the strength distribution is plotted in Figure 31.  POF 
values at intervals of 5 percent DLL change in the mean strength were determined by re-
calculating the scale parameter for each new mean strength and re-evaluating the strength PDF.  
Lower mean strength values result in higher POFs.  It is unlikely that the mean strength of the 
wing is greater than 148 percent DLL, the value where the POF becomes acceptable.  Therefore, 
more data on the mean strength of other wings in the fleet will not change the conclusion that the 
F-16 C/D wings need to be modified.  In fact, the wings need to be strengthened to at least 148 
percent DLL. 

The POF as a function of the shape parameter for a fixed mean strength of 128 percent DLL is 
presented in Figure 32.  Recall that the scale parameter also changes since, 

𝛽 =
128% 𝐷𝐿𝐿

𝛤 �1 + 1
𝛼�

.                                                          (66) 

As the shape parameter decreases, the scatter in the strength increases and the POF increases.  
So, even though the value of the shape parameter may be high compared to Freudenthal’s 
estimate, reducing the value of the shape parameter will not change the conclusion that the F-16 
C/D wings need to be modified.  The shape parameter needs to be in the range of 33 to 34 before 
the POF is below 10-7. 
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Figure 31.  POF as a Function of Mean Strength with a Shape Parameter of 24 

 
Figure 32.  POF as a Function of the Shape Parameter with a Mean Strength of 128 Percent DLL 
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6.3.2.2.1 Assessing Sensitivity to Extrapolation of Exceedance Distribution 
The load EDF in this example was extrapolated from 90 percent DLL to 150 percent DLL based 
upon a curve fit to the four data points between 80 percent DLL and 91 percent DLL.  This is not 
much data upon which to base this extrapolation.  In this section, the sensitivity of the POF to 
this extrapolation will be investigated by changing the shape parameter of the Weibull 
distribution used for extrapolation.  The Weibull distribution will be forced to pass through the 
point (90 percent DLL, 0.0034) at the end of the known exceedance points.  The scale parameter 
becomes 

𝛽 = 𝑒𝑥𝑝 � 𝑙𝑛(0.9) −
1
𝛼

𝑙𝑛 �𝑙𝑛 �
1

0.0034
��� .                               (67) 

Changing the shape parameter of a Weibull distribution can make it equal to other common 
distributions.  When the shape parameter is 3.5, the Weibull distribution is symmetric like a 
normal distribution.  A shape parameter of 2 gives a Rayleigh distribution.  And a shape 
parameter of 1 is an exponential distribution.  So, this section is also assessing the sensitivity of 
the POF to the distribution model chosen to extrapolate the exceedance curve. 

The effect of changes to the shape parameter on the extrapolation of the EDF is shown in Figure 
33.  As the shape parameter decreases, the probability of a load equal to 150 percent DLL 
occurring increases.  This will increase the POF. 

 
Figure 33.  The Effect of Shape Parameter on Extrapolation of the EDF 
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The resulting POF for these different load EDFs are given in Table 20 for a strength PDF that is 
a Weibull distribution with shape parameter of 24 and a scale parameter of 130.9 percent D LL.  
Notice that the POF has a minimum for the extrapolation of the EDF at a shape parameter of 
approximately 5.0.  The POF is still unacceptable for every extrapolation of the exceedance 
curve.  A modification to the wings is still necessary. 

Table 20.  Variation of POF with Load EDFs 

 

The sensitivity study showed that the POF for buckling of the wings was unacceptable for any 
reasonable changes in the strength PDF and the load EDF.  There is no additional data that could 
be collected that would change the decision to strengthen the wings.  So, while there might be 
some uncertainty about the value of the POF, it is certain that the wings need to be strengthened 
in order to meet structural integrity requirements. 

6.3.3 Two Random Variables Example:  Fracture Toughness and Maximum Load 
Consider the case where a crack is found in an airframe component, but the aircraft needs to 
flown somewhere to be repaired.  This might be the situation when an aircraft is deployed when 
a crack is found, and it needs to be flown back to the depot for the repair.  The failure mode of 
concern here is fracture of the part.  As long as the maximum applied stress intensity Kapp in the 
flight remains less than the fracture toughness of material Kc, fracture will not occur.  The POF 
equation is  

𝑃𝑓 = 𝑃𝑟�𝐾𝑐 ≤ 𝐾𝑎𝑝𝑝� = � 𝐷𝐾𝑎𝑝𝑝
(𝑥)𝑓𝐾𝐶

(𝑥)𝑑𝑥
∞

0

.                            (68) 

The applied stress intensity is equal to 

𝐾𝑎𝑝𝑝 = 𝜎𝑎𝑝𝑝𝛽√𝜋𝑎,                                                    (69) 
where a is the length of the crack, β is a factor that depends on the part geometry and the crack 
length, and σapp is the maximum stress applied to the part.  If the next flight is not too severe, as 
might be the case when flying from one base to another (noting that atmospheric turbulence can 
still be encountered), the crack is not going to grow much during the flight.  The crack length can 
be assumed constant during the flight.  Thus, β√(πa) becomes a constant multiplier on σapp.  Kapp 

Exceedance 
Shape 

Parameter

Exceedance 
Scale 

Parameter POF
1.00 15.84 3.44E-04
2.00 37.76 2.65E-05
3.00 50.44 5.61E-06
4.00 58.29 3.63E-06
5.00 63.58 3.37E-06
6.74 69.55 3.75E-06
8.00 72.43 4.31E-06
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is a random variable because σapp is a random variable. The fracture toughness Kc is the other 
random variable in the problem. 

The calculation of the POF for this example is discussed in the following sections. 

6.3.3.1 Calculation of the Stress Intensity Factor  
A 1.25 inch crack was detected at a 0.25 inch diameter hole near a wing root in 7050-T7351 
plate material.  The idealized geometry is shown in Figure 34.  The stress-intensity factor, K, for 
this geometry with a thru-thickness, radial-cracked hole is [17] 

 𝐾 = 𝜎𝛽√𝜋𝑎                                                          (70) 

where  

𝛽 = 𝛽ℎ𝑜𝑙𝑒𝛽𝑤𝑖𝑑𝑡ℎ,                                                        (71) 

 𝛽ℎ𝑜𝑙𝑒 = 0.7071 + 0.7548𝑧 + 0.3415𝑧2 + 0.642𝑧3 + 0.9196𝑧4,            (72) 

𝑧 =
1

1 + 𝑎
𝑟

,                                                         (73) 

 and 

 𝛽𝑤𝑖𝑑𝑡ℎ = �sec �𝜋
2

∙ 2𝑟+𝑎
𝑊−𝑎

�  .                                              (74) 

For this geometry and crack size, the stress intensity becomes 

 K = 1.572⋅σ. (75) 

 
Figure 34.  Geometry for Fracture Reliability Example 

Plate loaded in uniform tension with a through-thickness, radial cracked hole  

6.3.3.2 Determine the Probability Distribution for the Fracture Toughness 
For 0.60 inch thick 7050-T7351 aluminum plate in the L-T orientation, the best engineering data 
available are KIc results for 31 samples excised from 7050-T7351 plate ranging in thickness from 

Radius = r = 0.125 in.
Width = W = 10 in.
Thickness = B = 0.6 in.
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1.0 inch to 6.0 inches and machined into specimens 1.0 inch to 2.0 inches thick [18].  The data 
are rank ordered in Table 21 using median rank, Equation (26). 

Table 21.  Al 7050-T7351 Fracture Toughness KIc Data [18] 

 
  

KIc (ksi√in) Median Rank
28.6 0.0223
28.9 0.0541
29.1 0.0860
29.3 0.1178
29.3 0.1497
29.7 0.1815
33.3 0.2134
33.4 0.2452
33.5 0.2771
33.6 0.3089
33.6 0.3408
34.0 0.3726
34.2 0.4045
34.3 0.4363
34.3 0.4682
34.3 0.5000
34.5 0.5318
34.8 0.5637
35.0 0.5955
35.1 0.6274
35.5 0.6592
35.9 0.6911
36.4 0.7229
36.5 0.7548
36.9 0.7866
39.3 0.8185
39.3 0.8503
39.5 0.8822
41.5 0.9140
43.0 0.9459
43.4 0.9777
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Plotting the data on normal, lognormal, and Weibull probability plots gave correlations R2 of 
93.9 percent, 94.4 percent, and 89 percent, respectively.  Since the data plots the most linear 
(highest R2) on a lognormal plot, the lognormal distribution will be used to model the fracture 
toughness.  The data is plotted on a lognormal probability plot in Figure 35.  MLE was used to 
estimate the best fit line representing the best-fit distribution.  A two-sided 95 percent confidence 
band is constructed using the method described in Section 0.  

The mean of the natural logarithm of the fracture toughness is 3.545 corresponding to a fracture 
toughness of 34.6 ksi√in.  The standard deviation is 0.11.  Accordingly, the fracture toughness is 
modeled by the lognormal CDF  

𝑃𝑟(𝐾𝐶 < 𝑘) = Φ �
ln(𝑘) − ln(34.6)

0.11
�                                      (76) 

where Φ(z) is the standard normal CDF that has mean = 0 and standard deviation = 1. 

 
Figure 35.  Lognormal Probability Plot of Fracture Toughness for Al 7050-T7351 Plate  
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6.3.3.3 The Stress Exceedance Distribution Function 
Load exceedance data should be separated by mission type, or mission phase, if possible, as in 
Table 22.  The peak Nz exceedances for a fighter aircraft broken out by mission type in Table 22 
are the Handbook of Military Aircraft Design Normal Load Factor Exceedance Data [19]. The 
two most benign mission types are the Transition mission and the Instrument/Ferry mission.  The 
exceedance plot in Figure 36 shows that while the Transition flight has more Nz peaks overall, 
the number of exceedances in the Transition flight decreases very rapidly above 8.0g’s and has 
fewer exceedances above about 8.3g’s. It is not clear how the differences between these two 
mission types will affect the POF.  So, the POF using both exceedance curves will be calculated 
with the idea that these two missions will provide an idea of what could actually happen during a 
flight to a repair station. 

Table 22.  Maneuver Nz Exceedance per 1,000 FH by Mission for Fighter Aircraft [19] 

 
 

 

Nz Transition
Instrument/ 

Ferry
Air Combat 
Maneuvers Air-to-Air Air-to-Ground

2.0 23,466 6,391 36,894 27,847 38,373
2.5 22,347 5,917 34,913 25,620 36,642
3.0 17,439 4,645 28,220 19,927 29,666
3.5 12,945 3,254 22,129 15,146 22,878
4.0 10,092 2,456 17,697 11,277 17,602
4.5 7,362 1,805 13,173 8,431 12,753
5.0 5,015 1,154 9,732 6,642 8,571
5.5 3,635 888 7,523 4,964 5,537
6.0 2,454 562 5,489 3,613 3,233
6.5 1,641 444 3,628 2,299 1,814
7.0 966 355 2,396 1,423 1,178
7.5 521 207 1,620 876 417
8.0 245 89 669 438 125
8.5 30.7 59 187 292 63
9.0 - 29.6 26.8 109 20.9
9.5 - - - 73 10.4
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Figure 36.  Peak Nz Exceedances for Transition and Instrument/Ferry Flights 

The procedure used in Section 6.3.1.2 will be used to construct the EDF’s for the two mission 
types.  The average length of either a Transition or an Instrument/Ferry flight is 1.25 hours.  
There are 800 flights in 1000 FH.  The expected number of peak Nz exceedances during a flight 
are found by dividing the exceedances in Table 22 by 800 flights.  The results are shown in 
Table 23.  Any peak that has more than one exceedance in a flight has an exceedance probability 
of 1.0.  Assuming that only one peak occurs in the fractional exceedance in a flight (above 7.0g 
for the Transition mission, and 5.5g for the Instrument/Ferry mission), the fractional exceedance 
is the probability of exceeding an Nz value.  And for the initial assessment, it will be assumed 
that Nz never exceeds 9.0g during a Transition flight and never exceeds 9.5g during an 
Instrument/Ferry flight.  The resulting exceedance probabilities are given in Table 24. 

The next step is to fit a distribution function to the exceedance probabilities.  The Weibull 
distribution will be used because of its flexibility.  The exceedance probabilities that are less than 
one and greater than zero were plotted on a Weibull plot in Figure 37.  A LSE line was fit to the 
two datasets using Equation (23). The shape parameter for the Transition flight is 1.81, the scale 
parameter is 0.83g, and the minimum value is 7.0g.  The shape parameter for the 
Instrument/Ferry flight is 1.19, the scale parameter is 1.42g, and the minimum value is 5.5g.  The 
complete EDF for both types of flights are graphed in Figure 38. 

 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 2 3 4 5 6 7 8 9 10

Ex
ce

ed
an

ce
s 

in
 1

,0
00

 F
lig

ht
 H

ou
rs

Normal Load Factor Peak, Nz (g)

Instrument/Ferry
Transition



77 
Approved for public release; distribution unlimited. 

Table 23.  Peak Nz Exceedances in a Flight 

 

Table 24.  Probability of Exceeding Nz Value During a Flight 

 

Nz Transition
Instrument/ 

Ferry
2.0 29.33 7.989
2.5 27.93 7.396
3.0 21.80 5.806
3.5 16.18 4.068
4.0 12.62 3.070
4.5 9.203 2.256
5.0 6.269 1.443
5.5 4.544 1.110
6.0 3.068 0.703
6.5 2.051 0.555
7.0 1.208 0.444
7.5 0.651 0.259
8.0 0.306 0.111
8.5 0.038 0.074
9.0 0 0.037
9.5 - 0

Nz Transition
Instrument/ 

Ferry
2.0 1.00 1.00
2.5 1.00 1.00
3.0 1.00 1.00
3.5 1.00 1.00
4.0 1.00 1.00
4.5 1.00 1.00
5.0 1.00 1.00
5.5 1.00 1.00
6.0 1.00 0.703
6.5 1.00 0.555
7.0 1.00 0.444
7.5 0.651 0.259
8.0 0.306 0.111
8.5 0.038 0.074
9.0 0 0.037
9.5 - 0
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Figure 37.  Weibull Extrapolation of Nz EDF for Transition and Instrument/Ferry Flights 

 
Figure 38.  Nz EDFs for Transition and Instrument/Ferry Flights 
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The peak Nz must be converted to an internal load using a stress transfer function.  The 
associated applied stress σapp is determined from a stress analysis of the local detail using the 
derived internal load.  Assume that this results in σapp being equal to 1.741 times Nz. 

The stress intensity EDF is derived by scaling the Nz EDF appropriately.  Since  

 Kapp = 1.572 ⋅σapp = 1.572 (1.741 ⋅ Nz) (77) 
 Pr(Kapp > k) = Pr(Nz > k/2.737)  (78) 
Substituting k/2.737 for Nz in the Nz EDF for the Transition flight yields 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� =  1,  if 
𝑘

2.737
≤ 7,                                     (79a) 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 𝑒𝑥𝑝 �− �
𝑘

2.737 − 7
0.83

�

1.81

� , if 8.5 >
𝑘

2.737
> 7,        (79b) 

  

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 10232.05−27.45� 𝑘
2.737�,               if 9 >

𝑘
2.737

≥ 8.5,           (79𝑐) 

and  

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 0,               if 
𝑘

2.737
≥ 9.                                (79𝑑) 

The resulting EDF for the stress intensity factor during the Instrument/Ferry flight is  

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� =  1,  if 
𝑘

2.737
≤ 5.5,                                   (80a) 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 𝑒𝑥𝑝 �− �
𝑘

2.737 − 5.5
1.42

�

1.19

� , if 9 >
𝑘

2.737
> 5.5,    (80b) 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 10245.83−27.46� 𝑘
2.737�, if 9.5 >

𝑘
2.737

≥ 9,            (80c) 

and   

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 0,               if 
𝑘

2.737
≥ 9.5.                              (80𝑑) 

6.3.3.4 Calculation of Probability of Failure (POF) 
Now that the applied stress intensity EDFs and the fracture toughness PDF have been 
determined, the POF can be calculated.  The relationship between the three distributions is 
shown graphically in Figure 39.  From this graph, it is apparent that the limits of the numerical 
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integration should be from 15 ksi√in to 25 or 26 ksi√in depending upon which EDF is being 
used.  There is very little contribution to the POF outside of this range. 

 
Figure 39.  Plot of Applied Stress Intensity EDFs and Fracture Toughness PDF 

The numerical integration of the POF equation using the Transition flight EDF is performed in 
Table 25.  The upper limit of the integration is 25 ksi√in since the product of 2.737 and 9.0g (the 
upper limit of the Nz EDF) is 24.6 ksi√in.  The trapezoidal rule was used to perform the 
integration with an interval ∆ of 0.5 ksi√in.  The POF for a Transition-type flight is 1.94 x 10-5. 

The numerical integration of the POF equation using the Instrument/Ferry flight EDF is 
performed using Table 26.  The upper limit for this integration is 26 ksi√in, the product of 2.737 
and 9.5g (the upper limit of the Nz EDF).  The trapezoidal rule is used again to calculate the 
integral.  The POF for an Instrument/Ferry-type flight is 7.71 x 10-5. 

Based upon these two results, a reasonable estimate of the POF for this component with a 1.25 
in. long crack during a single flight to a repair station is around 5 x 10-5.  This is greater than 10-5 
per flight probability of catastrophic failure specified in Mil-Std-1530C [3] as unacceptable.  
Opportunities to reduce the risk of failure should be further evaluated to ensure that the aircraft 
could be safely flown to the repair station.  These risk reduction opportunities include further 
flight restrictions and temporary repairs.  The POF is dominated by the chances of failure in 
stress intensity range of 20 to 25 ksi√in corresponding to Nz values of 7.3g to 9.1g.  So, the 
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additional flight restrictions would need to ensure that an Nz of 7.25g is not exceeded during the 
flight. 

Table 25.  POF for Transition Flight EDF 

 

  

Stress 
Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

15 1.00 6.49E-14 6.49E-14
15.5 1.00 5.81E-13 5.81E-13
16 1.00 4.45E-12 4.45E-12

16.5 1.00 2.96E-11 2.96E-11
17 1.00 1.73E-10 1.73E-10

17.5 1.00 8.91E-10 8.91E-10
18 1.00 4.11E-09 4.11E-09

18.5 1.00 1.71E-08 1.71E-08
19 1.00 6.43E-08 6.43E-08

19.5 0.97 2.21E-07 2.14E-07
20 0.85 6.99E-07 5.92E-07

20.5 0.68 2.04E-06 1.39E-06
21 0.50 5.52E-06 2.79E-06

21.5 0.35 1.40E-05 4.85E-06
22 0.22 3.30E-05 7.38E-06

22.5 0.13 7.35E-05 9.84E-06
23 0.075 1.54E-04 1.16E-05

23.5 0.0002 3.07E-04 7.08E-08
24 2.23E-09 5.79E-04 1.29E-12

24.5 2.16E-14 1.04E-03 2.25E-17
25 0.00 1.79E-03 0.00E+00

POF = 1.94E-05
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Table 26.  POF for Instrument/Ferry Flight EDF 

 
 

6.3.3.5 Sensitivity of Probability of Failure to Distribution Models 
A sensitivity study should be conducted to determine the impact of uncertainty about the fracture 
toughness distribution and the EDF distributions on the POF.  The sensitivity study is discussed 
in the following sections. 

6.3.3.5.1 Uncertainty in the Fracture Toughness Distribution 
The significance of the 95 percent confidence band on the fracture toughness distribution in 
Figure 35 is that if a different sample of multiple pieces was selected from the entire population 
of 7050-T7351 aluminum plate, the fracture toughness distribution from that sample will fall 

Stress Intensity 
(ksi√in)

Stress Intensity 
EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

15 1.00 6.49E-14 6.49E-14
15.5 0.93 5.81E-13 5.38E-13
16 0.83 4.45E-12 3.69E-12

16.5 0.73 2.96E-11 2.17E-11
17 0.64 1.73E-10 1.11E-10

17.5 0.56 8.91E-10 5.00E-10
18 0.49 4.11E-09 2.00E-09

18.5 0.42 1.71E-08 7.17E-09
19 0.36 6.43E-08 2.32E-08

19.5 0.31 2.21E-07 6.84E-08
20 0.26 6.99E-07 1.84E-07

20.5 0.22 2.04E-06 4.58E-07
21 0.19 5.52E-06 1.05E-06

21.5 0.16 1.40E-05 2.25E-06
22 0.14 3.30E-05 4.49E-06

22.5 0.11 7.35E-05 8.41E-06
23 0.10 1.54E-04 1.48E-05

23.5 0.081 3.07E-04 2.47E-05
24 0.067 5.79E-04 3.90E-05

24.5 0.056 1.04E-03 5.86E-05
25 1.02E-05 1.79E-03 1.82E-08

25.5 9.81E-11 2.94E-03 2.89E-13
26 9.44E-16 4.65E-03 4.39E-18

POF = 7.71E-05
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within the confidence band 95 percent of the time.  Since this aircraft is a different sample than 
the test specimens, the fracture toughness distribution for the aircraft might be different than the 
sample from test data.  A likely fracture toughness distribution for the aircraft sample that yields 
the lowest POF has the low toughness tail of the distribution tangent to the upper curve of the 
95 percent confidence band as shown by the red line in Figure 40.  The standard deviation of this 
distribution (slope of the line) is 0.089 and the mean remains the same.  The POF for this new 
fracture toughness distribution with the Instrument/Ferry EDF is 4.88 x 10-6.  The calculation is 
shown in Table 27.  This is an order of magnitude decrease in the POF. 

 
Figure 40.  Minimum POF Fracture Toughness Distribution within 95 Percent Confidence Band 
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Table 27.  POF for Fracture Toughness PDF with Standard Deviation of 0.089  

 
(using Instrument/Ferry Flight EDF) 

A normal distribution described the fracture toughness data almost as well as the lognormal 
distribution.  The normal distribution has higher probabilities in the tails than does the lognormal 
distribution.  The MLE for a normal distribution to the fracture toughness data in Table 21 gives 
a mean value of 34.8 ksi√in and a standard deviation of 3.87.  The curve for this normal 
distribution is compared to the lognormal distribution of Figure 35 on a lognormal probability 
plot in Figure 41.  The normal distribution has higher cumulative probabilities in the 20 to 30 
ksi√in range than does the lognormal distribution.  The slope of the cumulative probability curve 
is also greater for the normal distribution which translates to higher PDF values.  Thus, switching 
to a normal distribution will increase the POF.  The POF with a normal distribution for the 
fracture toughness and the Instrument/Ferry EDF is 4.08 x 10-4.  The POF calculation is shown in 
Table 28. 

Stress 
Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

15 1.00 1.87E-20 1.87E-20
15.5 0.93 5.41E-19 5.01E-19
16 0.83 1.23E-17 1.03E-17

16.5 0.73 2.27E-16 1.67E-16
17 0.64 3.40E-15 2.19E-15

17.5 0.56 4.24E-14 2.38E-14
18 0.49 4.45E-13 2.17E-13

18.5 0.42 3.97E-12 1.67E-12
19 0.36 3.06E-11 1.10E-11

19.5 0.31 2.05E-10 6.32E-11
20 0.26 1.20E-09 3.17E-10

20.5 0.22 6.25E-09 1.40E-09
21 0.19 2.90E-08 5.52E-09

21.5 0.16 1.21E-07 1.95E-08
22 0.14 4.57E-07 6.21E-08

22.5 0.11 1.57E-06 1.79E-07
23 0.10 4.93E-06 4.74E-07

23.5 0.081 1.42E-05 1.15E-06
24 0.067 3.80E-05 2.56E-06

24.5 0.056 9.42E-05 5.30E-06
25 1.02E-05 2.18E-04 2.22E-09

25.5 9.81E-11 4.71E-04 4.61E-14
26 9.44E-16 9.55E-04 9.02E-19

POF = 4.88E-06
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Figure 41.  Normal and Lognormal Distributions Fit to Al 7050-T7351 Plate Fracture Toughness 
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Table 28.  POF with Normal PDF for Fracture Toughness  

 
(using Instrument/Ferry Flight EDF) 

6.3.3.5.2 Uncertainty in the Nz Exceedance Distributions 
The Nz exceedances were extrapolated from records of 65 FH for the Transition mission and 34 
FH for the Instrument/Ferry mission.  So while the extrapolated data says that Nz during the 
Transition mission never exceeds 9.0g and never exceeds 9.5g during the Instrument/Ferry 
mission, all that can really be said is that an Nz of 9.0g was not exceeded during any Transition 
flights that were recorded.  Given that an average flight is 1.25 hours, 65 FH is equivalent to 52 
flights.  So, it can only be said that the probability of exceeding an Nz of 9.0g during a Transition 
flight is less than 1/52 or 0.019. Similarly, the probability of Nz exceeding 9.5g during an 
Instrument/Ferry flight is less than 1/27, or 0.037.  Thus, it was decided to extrapolate the 
Weibull distribution found in Section 6.3.3.3 to an Nz of 10g in Figure 42 to allow for tolerances 
in the flight control limits.  The solid symbols in Figure 42 are the exceedance probability limits 

Stress 
Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

15 1.00 2.13E-07 2.13E-07
15.5 0.93 4.10E-07 3.80E-07
16 0.83 7.74E-07 6.42E-07

16.5 0.73 1.44E-06 1.06E-06
17 0.64 2.63E-06 1.69E-06

17.5 0.56 4.72E-06 2.65E-06
18 0.49 8.34E-06 4.06E-06

18.5 0.42 1.45E-05 6.09E-06
19 0.36 2.48E-05 8.94E-06

19.5 0.31 4.16E-05 1.29E-05
20 0.26 6.88E-05 1.81E-05

20.5 0.22 1.12E-04 2.51E-05
21 0.19 1.79E-04 3.40E-05

21.5 0.16 2.81E-04 4.52E-05
22 0.14 4.34E-04 5.90E-05

22.5 0.11 6.60E-04 7.55E-05
23 0.10 9.87E-04 9.49E-05

23.5 0.081 1.45E-03 1.17E-04
24 0.067 2.10E-03 1.41E-04

24.5 0.056 2.99E-03 1.68E-04
25 1.02E-05 4.18E-03 4.25E-08

25.5 9.81E-11 5.74E-03 5.63E-13
26 9.44E-16 7.77E-03 7.34E-18

POF = 4.08E-04
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calculated above for the two types of flights, 0.019 and 0.037.  These extrapolated EDFs are 
compared to the EDFs previously derived in Section 6.3.3.3 in Figure 43. 

 
Figure 42.  Weibull Plot of Extrapolation of Nz EDF to Higher Nz Values 
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Figure 43.  EDF Comparison for High Nz Tails 

The stress intensity EDF for the Transition flight becomes 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� =  1,           if 
𝑘

2.737
≤ 7,                             (81a) 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 𝑒𝑥𝑝 �− �
𝑘

2.737 − 7
0.83

�

1.81

� , if 7 <
𝑘

2.737
≤ 10,     (81b) 

and 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 0,            if 
𝑘

2.737
≥ 10.                        (81c) 

The stress intensity EDF for the Instrument/Ferry flight becomes 
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𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 𝑒𝑥𝑝 �− �
𝑘

2.737 − 5.5
1.42

�

1.19

� , 𝑖𝑓 5.5 <
𝑘

2.737
≤ 10, (82𝑏) 

and 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 0,               if 
𝑘

2.737
≥ 10.                    (82c) 

The POF is calculated for these alternate EDFs in Table 29 and Table 30.  For the Transition 
flight, the POF increased by a factor of 2 over the initial POF estimate.  For the Instrument/Ferry 
flight, the POF increased by a factor of 6 over the initial POF estimate. 

Table 29.  POF for Transition Flight EDF Extrapolated to 10g 

    
 

  

Stress 
Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

18 1.00 4.11E-09 4.11E-09
18.5 1.00 1.71E-08 1.71E-08
19 1.00 6.43E-08 6.43E-08

19.5 0.97 2.21E-07 2.14E-07
20 0.85 6.99E-07 5.92E-07

20.5 0.68 2.04E-06 1.39E-06
21 0.50 5.52E-06 2.79E-06

21.5 0.35 1.40E-05 4.85E-06
22 0.22 3.30E-05 7.38E-06

22.5 0.13 7.35E-05 9.84E-06
23 0.075 1.54E-04 1.16E-05

23.5 0.040 3.07E-04 1.21E-05
24 0.020 5.79E-04 1.13E-05

24.5 0.009 1.04E-03 9.49E-06
25 0.0040 1.79E-03 7.13E-06

25.5 0.0016 2.94E-03 4.84E-06
26 0.0006 4.65E-03 2.97E-06

26.5 0.0002 7.06E-03 1.66E-06
27 0.0001 1.03E-02 8.42E-07

POF = 4.44E-05
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Table 30.  POF for Instrument/Ferry Flight EDF Extrapolated to 10g 

    

6.3.3.6 Conclusions Drawn from Two Random Variable Fracture POF Analysis 
Based on the initial analyses and subsequent sensitivity study the POF for this component with a 
1.25 in. crack is likely on the order of 5 x 10-5 during flight back to a repair station.  This POF is 
too high to conclude that the flight can be made safely.  Opportunities for reducing the POF 
should be explored before flying this aircraft. 

6.4 Probability of Failure:  Three Random Variables 
This last example is a bit contrived, but it sets the stage for more realistic POF calculations 
where there is variability in the loading, uncertainty about the fracture toughness, and uncertainty 
about the crack size.  This might be the case when nondestructive inspection indicates that a 
crack is present, but the location cannot be viewed so a physical measurement of the crack is not 
possible.  This example in this will only determine the POF during the next flight. 

6.4.1 Three Random Variables:  Fracture Toughness, Applied Loads, and Crack Size 
Consider the example in Section 6.3.3, but this time there is uncertainty about the true crack size.  
If the uncertainty is due to measurement error, it is usually modeled by a normal distribution.  
Since the point of the example is to show how to calculate POF when there are three random 

Stress 
Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H  = D Kapp  * f KC

18 0.49 4.11E-09 2.00E-09
18.5 0.42 1.71E-08 7.17E-09
19 0.36 6.43E-08 2.32E-08

19.5 0.31 2.21E-07 6.84E-08
20 0.26 6.99E-07 1.84E-07

20.5 0.22 2.04E-06 4.58E-07
21 0.19 5.52E-06 1.05E-06

21.5 0.16 1.40E-05 2.25E-06
22 0.14 3.30E-05 4.49E-06

22.5 0.11 7.35E-05 8.41E-06
23 0.10 1.54E-04 1.48E-05

23.5 0.081 3.07E-04 2.47E-05
24 0.067 5.79E-04 3.90E-05

24.5 0.056 1.04E-03 5.86E-05
25 0.047 1.79E-03 8.40E-05

25.5 0.039 2.94E-03 1.15E-04
26 0.032 4.65E-03 1.51E-04

26.5 0.027 7.06E-03 1.90E-04
27 0.022 1.03E-02 2.30E-04

POF = 4.04E-04
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variables, assume that the uncertainty about the crack size is described by a normal distribution 
with a mean of 1.25 inches and a standard deviation of 0.10 inches  The same procedure would 
apply if other distribution functions are used.  The information needed to work this example is 
summarized in Table 31 and Figure 44.  Remember that σapp is equal to 1.741 times Nz.  The 
σapp distribution used is the Weibull extrapolated Nz EDF for the Transition flight from Section 
6.3.3.5.2 scaled appropriately. 

 
Figure 44.  Geometry for Fracture Reliability Example (Repeated) 

Plate loaded in uniform tension with a through-thickness, radial cracked hole 

  

Radius = r = 0.125 in.
Width = W = 10 in.
Thickness = B = 0.6 in.
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Table 31.  Summary of Information for Three Random Variable Example 

Variable Description 

Fracture Toughness CDF, KC (ksi√in) 
𝑃𝑟(𝐾𝐶 < 𝑘) = Φ �

𝑙𝑛(𝑘) − 𝑙𝑛(34.6)
0.11

� 

Applied Stress EDF, σapp (ksi) 
{Transition Flight EDF, Section 

6.3.3.5.2} 

𝑃𝑟�𝜎𝑎𝑝𝑝 > 𝑠� =  1,  if 
𝑠

1.741
≤ 7; 

𝑃𝑟�𝜎𝑎𝑝𝑝 > 𝑠� = 𝑒𝑥𝑝 �− �
𝑠

1.741 − 7
0.83 �

1.81

� ,

if 10 ≥
𝑠

1.741
> 7 

Crack Size CDF, a (in) 𝑃𝑟(𝑎 < 𝐴) = Φ �
𝐴 − 1.25

0.10 � 

Stress Intensity, Kapp (ksi√in) 

𝐾𝑎𝑝𝑝 = 𝜎𝑎𝑝𝑝𝛽√𝜋𝑎, 
𝛽 = 𝛽ℎ𝑜𝑙𝑒𝛽𝑤𝑖𝑑𝑡ℎ 

βhole 

𝛽ℎ𝑜𝑙𝑒 = 0.7071 + 0.7548𝑧 + 0.3415𝑧2

+ 0.642𝑧3 + 0.9196𝑧4, 

𝑧 =
1

1 + 𝑎
𝑟

 

βwidth 
𝛽𝑤𝑖𝑑𝑡ℎ = �sec �

𝜋
2

∙
2𝑟 + 𝑎
𝑊 − 𝑎

�  

6.4.2 The Probability of Failure Equation 
The equation for calculating the POF now becomes 

𝑃𝐹 = 𝑃𝑟�𝐾𝑐 ≤ 𝐾𝑎𝑝𝑝� = � 𝐷𝐾𝑎𝑝𝑝
(𝑥, 𝑦)𝑓𝐾𝐶

(𝑥)𝑑𝑥 𝑓𝑎(𝑦)𝑑𝑦
∞

0

,                 (83) 

since the applied stress intensity is now a function of two random variables, σapp and a, 

𝐾𝑎𝑝𝑝 = 𝜎𝑎𝑝𝑝𝛽√𝜋𝑎.                                                 (84) 
The POF equation can also be written as 
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𝑃𝐹 = 𝑃𝑟�𝜎𝑐 ≤ 𝜎𝑎𝑝𝑝� = � 𝐷𝜎𝑎𝑝𝑝
(𝑥)𝑓𝜎𝐶

(𝑥, 𝑦)𝑑𝑥 𝑓𝑎(𝑦)𝑑𝑦
∞

0

,                   (85) 

where the critical failure stress σC is a function of two random variables, KC and a, 

𝜎𝐶 =
𝐾𝐶

𝛽√𝜋𝑎
 .                                                          (86) 

However, calculating the POF for the product of two random variables is conceptually easier 
than for a quotient.  So, the first formulation will be used in this example. 

6.4.3 Calculating the Probability of Failure 
The strategy for calculating the POF in this situation is to perform the inner integration over the 
stress intensity, 

𝑃𝑓(𝑎𝑖) = � 𝐷𝐾𝑎𝑝𝑝
(𝑥, 𝑎𝑖)𝑓𝐾𝐶

(𝑥)𝑑𝑥
∞

0

,                                         (87) 

at discrete, uniformly-spaced crack sizes ai.  Then use the values of Pf(ai) in performing the 
outer integration over the crack size.  The crack size range for the integration and the desired 
discretization of the range must be decided upon at the start as this determines the Pf(ai)’s that 
must be calculated. 

The crack size range for the integration was chosen to be from -6 standard deviations to +6 
standard deviations, i.e., from 0.65 inches to 1.85 inches.  A crack size increment of 0.05 inches 
was selected to discretize the range.  The determination of each Pf(ai) proceeds just like the 
integration in Section 6.3.3.4 for each crack size ai. 

From Section 6.3.3.5.2, the EDF for Kapp is 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� =  1,        if 
𝑘

1.741𝛽�𝜋𝑎𝑖
≤ 7g,                      (88a) 

𝑃𝑟�𝐾𝑎𝑝𝑝 > 𝑘� = 𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡

−

⎝

⎜
⎛

𝑘
1.741𝛽�𝜋𝑎𝑖

− 7

0.83

⎠

⎟
⎞

1.81

⎦
⎥
⎥
⎥
⎤

,  

if 10g ≥
𝑘

1.741𝛽�𝜋𝑎𝑖
> 7g.              (88b) 

The calculation of β√πai is summarized in Table 32. 

The fracture toughness distribution is unchanged from Section 6.3.3.2. 
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Table 32.  Calculation of β√πai 

 

In Section 6.3.3.5.2, the Pf(ai) for ai equal to 1.25 in. was calculated to be 4.44 x 10-5.    The 
calculations of Pf(ai) for other selected values of ai are summarized in Table 33 through Table 
36.  In each of these tables, Pf(ai) is calculated using the trapezoidal rule applied to values in the 
last column.  Pf(ai) is calculated over a reduced stress intensity range, 16 to 27 ksi√in, since 
there is little contribution to the probability below 16 ksi√in. 

 
  

Crack Size, 
a i  (in)

z = 
1/(1+a i /r) β hole β width β √π a i

0.65 0.1613 0.8410 1.0058 1.209
0.70 0.1515 0.8320 1.0065 1.242
0.75 0.1429 0.8242 1.0073 1.274
0.80 0.1351 0.8172 1.0081 1.306
0.85 0.1282 0.8111 1.0090 1.337
0.90 0.1220 0.8056 1.0100 1.368
0.95 0.1163 0.8007 1.0110 1.398
1.00 0.1111 0.7962 1.0121 1.428
1.05 0.1064 0.7922 1.0132 1.458
1.10 0.1020 0.7885 1.0144 1.487
1.15 0.0980 0.7851 1.0157 1.516
1.20 0.0943 0.7820 1.0171 1.544
1.25 0.0909 0.7791 1.0185 1.572
1.30 0.0877 0.7764 1.0200 1.601
1.35 0.0847 0.7740 1.0216 1.628
1.40 0.0820 0.7717 1.0233 1.656
1.45 0.0794 0.7695 1.0251 1.684
1.50 0.0769 0.7675 1.0270 1.711
1.55 0.0746 0.7656 1.0289 1.738
1.60 0.0725 0.7639 1.0310 1.766
1.65 0.0704 0.7622 1.0332 1.793
1.70 0.0685 0.7606 1.0355 1.820
1.75 0.0667 0.7591 1.0379 1.847
1.80 0.0649 0.7577 1.0404 1.875
1.85 0.0633 0.7564 1.0430 1.902
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Table 33.  Calculation of Pf(ai) for ai equal to 1.00 inch 

    

 

Table 34.  Calculation of Pf(ai) for ai equal to 1.30 inches 

    
 

 

Stress Intensity 
(ksi√in)

Stress 
Intensity EDF, 

D Kapp

Fracture 
Toughness 

PDF, f KC H = D Kapp  * f KC
16 1 4.45E-12 4.45E-12
17 1 1.73E-10 1.73E-10
18 0.899 4.11E-09 3.70E-09
19 0.533 6.43E-08 3.43E-08
20 0.220 6.99E-07 1.53E-07
21 0.0650 5.52E-06 3.59E-07
22 0.0141 3.30E-05 4.65E-07
23 0.0023 1.54E-04 3.51E-07
24 0.0003 5.79E-04 1.60E-07
25 2.54E-05 1.79E-03 4.55E-08
26 1.79E-06 4.65E-03 8.31E-09
27 9.67E-08 1.03E-02 9.98E-10

P f (a i )  = 1.58E-06

Stress 
Intensity 
(ksi√in)

Stress 
Intensity EDF, 

D Kapp

Fracture 
Toughness 

PDF, f KC H = D Kapp  * f KC
16 1 4.45E-12 4.45E-12
17 1 1.73E-10 1.73E-10
18 1 4.11E-09 4.11E-09
19 1 6.43E-08 6.43E-08
20 0.942 6.99E-07 6.58E-07
21 0.637 5.52E-06 3.52E-06
22 0.319 3.30E-05 1.05E-05
23 0.122 1.54E-04 1.88E-05
24 0.0362 5.79E-04 2.10E-05
25 0.0084 1.79E-03 1.51E-05
26 0.0016 4.65E-03 7.23E-06
27 0.0002 1.03E-02 2.36E-06

P f (a i )  = 7.81E-05
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Table 35.  Calculation of Pf(ai) for ai equal to 1.40 inches 

   

 

Table 36.  Calculation of Pf(ai) for ai equal to 1.50 inches 

   
 

 

Stress Intensity 
(ksi√in)

Stress 
Intensity 

EDF, D Kapp

Fracture 
Toughness 

PDF, f KC H = D Kapp  * f KC
16 1 4.45E-12 4.45E-12
17 1 1.73E-10 1.73E-10
18 1 4.11E-09 4.11E-09
19 1 6.43E-08 6.43E-08
20 1 6.99E-07 6.99E-07
21 0.866 5.52E-06 4.79E-06
22 0.544 3.30E-05 1.80E-05
23 0.261 1.54E-04 4.02E-05
24 0.097 5.79E-04 5.64E-05
25 0.029 1.79E-03 5.14E-05
26 0.0068 4.65E-03 3.15E-05
27 0.0013 1.03E-02 1.33E-05

P f (a i )  = 2.10E-04

Stress Intensity 
(ksi√in)

Stress 
Intensity EDF, 

D Kapp

Fracture 
Toughness 

PDF, f KC H = D Kapp  * f KC
16 1 4.45E-12 4.45E-12
17 1 1.73E-10 1.73E-10
18 1 4.11E-09 4.11E-09
19 1 6.43E-08 6.43E-08
20 1 6.99E-07 6.99E-07
21 0.994 5.52E-06 5.49E-06
22 0.779 3.30E-05 2.57E-05
23 0.461 1.54E-04 7.11E-05
24 0.213 5.79E-04 1.23E-04
25 0.078 1.79E-03 1.40E-04
26 0.023 4.65E-03 1.07E-04
27 0.0055 1.03E-02 5.69E-05

P f (a i )  = 5.01E-04
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The total POF can then be calculated as 

𝑃𝐹 = � 𝑃𝑓(𝑦) ∙ 𝑓𝑎(𝑦)𝑑𝑦
∞

0

. 

The integration is performed by applying the trapezoidal rule to the product of Pf(ai) and the 
fa(ai) in Table 37.  As would be expected, the uncertainty about the crack size increases the POF.  
Since the assumed uncertainty about the crack size is small, the increase in POF is not very large. 

Table 37.  Calculation of Total POF for Random Crack Size Example 

  
 

Crack Size, 
a i  (in) PDF, f a (a i ) P f (a i ) f a (a i )*P f (a i )
0.65 6.08E-08 1.38E-09 8.39E-17
0.70 1.08E-06 4.81E-09 5.18E-15
0.75 1.49E-05 1.50E-08 2.24E-13
0.80 0.0002 4.41E-08 7.05E-12
0.85 0.0013 1.18E-07 1.58E-10
0.90 0.0087 3.00E-07 2.61E-09
0.95 0.0443 7.04E-07 3.12E-08
1.00 0.1753 1.58E-06 2.77E-07
1.05 0.5399 3.40E-06 1.84E-06
1.10 1.2952 6.88E-06 8.91E-06
1.15 2.4197 1.34E-05 3.25E-05
1.20 3.5207 2.48E-05 8.71E-05
1.25 3.9894 4.42E-05 1.76E-04
1.30 3.5207 7.81E-05 2.75E-04
1.35 2.4197 1.29E-04 3.11E-04
1.40 1.2952 2.10E-04 2.72E-04
1.45 0.5399 3.32E-04 1.79E-04
1.50 0.1753 5.01E-04 8.79E-05
1.55 0.0443 7.37E-04 3.27E-05
1.60 0.0087 1.07E-03 9.32E-06
1.65 0.0013 1.48E-03 1.99E-06
1.70 0.0002 2.01E-03 3.21E-07
1.75 1.49E-05 2.65E-03 3.94E-08
1.80 1.08E-06 3.43E-03 3.70E-09
1.85 6.08E-08 4.30E-03 2.61E-10

POF = 7.38E-05
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A sensitivity study should be performed decreasing the crack size increment in order to be sure 
that the answer has converged.  This is left for the reader to do if they wish.  The sensitivity of 
the POF to the applied stress EDF and the fracture toughness PDF was investigated previously in 
Section 6.3.3.5.  The sensitivity of the POF to the uncertainty about the appropriate crack size 
distribution and its parameters should also be investigated, but will not be done here. 
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7.0 CONCLUSION  
This volume is intended to be the first in a series that provides guidance on how to perform 
structural reliability assessments of aircraft structure.  In this volume, fundamental principles of 
structural reliability analysis were introduced and demonstrated in worked examples.  A 
familiarity with probability theory and concepts was assumed.  The complexity of the examples 
did not extend beyond assessing the reliability during the next increment of time, e.g., the next 
flight. 
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LIST OF ACRONYMS, ABBREVIATIONS AND SYMBOLS 
Acronym Description 
A/C   Aircraft 

CDF Cumulative Distribution Function 

DLL Design Limit Load 

EDF   Exceedance Distribution Function 

EFH Equivalent Flight Hours 

FH Flight Hour(s) 

HRF Hazard Rate Function 

ksi Kilopounds per Square Inch 

LH Left Hand 

LSE Least Squares Estimate 

MLE Maximum Likelihood Estimate 

MLG Main Landing Gear 

PDF Probability Density Function 

RH Right Hand 

SFPOF Single Flight Probability of Failure 

UTS Ultimate Tensile Strength 

WBM Wing Bending Moment 

α Shape parameter for Weibull Distribution 

β Scale parameter for Weibull Distribution 

λ Rate parameter for Exponential Distribution 

µ Mean of a Population 

σ Standard Deviation, or Stress 



103 
Approved for public release; distribution unlimited. 

INDEX 

Anderson-Darling Goodness-of-Fit Test, 45 
allowable critical percentile, 47 

Confidence band 
normal distribution, 42 

determining, 42 
Weibull distribution, 57 

determining, 58 
Cumulative Distribution Function (CDF) 

definition, 16 
Equivalent flight hours, 62 
Exceedance Distribution Function (EDF) 

definition, 16 
estimating from exceedances, 69 
extrapolating, 71 
stress, 85 
stress intensity, 86 

Exponential Distribution 
definition, 25 
rate parameter, 25 

Factor of Safety 
and probability of failure, 13 

Failure 
expected number of, 52, 60, 75 

Gamma function, 22 
in Excel, 51 

Goodness-of-Fit Test, 45 
Anderson-Darling, 45 
comparing model distributions, 47 

Hazard Rate Function (HRF) 
cumulative, 17 
definition, 17 
Weibull distribution, 54 

Hazard Risk Index (HRI), 15 
Lifetime distribution 

definition, 16 
estimating 

single data point, 50 
with run-outs, 55 

expected number of failures, 60 
from failure data, 50 
from physics of failure, 66 
time until repair, 63 

Lognormal distribution 
definition, 20 

Maximum Likelihood Estimation (MLE), 
32, 33 
performing, 34 
versus Least Square Estimate (LSE), 37 
versus Least Squares Estimate (LSE), 38, 

39, 57 
Mean value 

lognormal distribution, 20 
normal distribution, 18 
Weibull distribution, 22 

median 
lognormal distribution, 20 

Normal distribution 
definition, 18 
properties, 18 
standard, 18 

Numerical integration 
trapezoidal rule, 74, 87 

Probability Density Function (PDF) 
definition, 16 

Probability distribution 
fitting to data, 27 
fracture toughness, 83 
Weibull 

estimate from single data point, 68 
Probability of Failure (POF), 12 

and factor of safety, 13 
calculation, 74, 87 
integral equation 

three random variables, 96 
two random variables, 66 

one random variable, 66 
sensitivity study, 76, 89 
three random variables, 94 
two random variables 

fracture, 82 
static strength, 67 

Probability plot, 27 
lognormal distribution, 31 
normal distribution, 27 
Weibull distribution, 28, 31, 38, 39 

Rank Order, 29 
Bernard Rank. See Median Rank 
Mean Rank, 29 
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Median Rank, 29 
Reliability, 13 

definition, 16 
structural, 13 

Risk 
definition, 15 

Shape parameter 
Weibull distribution 

ranges for common materials, 51 
Single Flight Probability of Failure 

(SFPOF), 12, 54 
definition, 17 

Standard deviation 
lognormal distribution, 20 

normal distribution, 18 
Weibull distribution, 22 

Statistical Analysis of Data, 33 
Stress Intensity Factor, 82 
Weibull distribution 

definition, 22 
estimating 

from single data point, 52 
location parameter, 22 
scale parameter, 22 
shape parameter, 22 
significance of change in shape 

parameter, 39 
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